• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão analitica

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Expressão analitica

Mensagempor joaofonseca » Seg Dez 12, 2011 22:59

Alguém consegue decifrar qual a expressão analitica deste gráfico?

Transf_graph.jpg
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão analitica

Mensagempor joaofonseca » Ter Dez 13, 2011 17:07

Este problema mostra que quem dominar as transformações de funções conseguirá resolver muitos problemas sobre funções de forma simples.
Pela observação do gráfico, pode-se identificar o gráfico parcial de duas parabolas.O gráfico parcial da parabola da direita é identico ao gráfico parcial da parabola da esquerda.Conclui-se que qualquer que tenha sido a transformação a que a função tenha sido sujeita, a função trasformada trata os valores negativos de x da mesma forma que os valores positivos de x.Qual é a operação matemática que devolve valores positivos independentemente dos valores introduzidos?

É o valor absoluto!Neste caso, como temos uma reflexão em relação ao eixo Oy, temos g(x)=f(|x|).Agora basta analizar a parte direita do gráfico e escrever a expressão analitica para a parabola.
Na expressão y=ax^2+bx+c, c=-2. Sabemos também que um dos zeros é o 2.Encontrar o outro zero é que se torna dificil.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão analitica

Mensagempor LuizAquino » Qui Dez 15, 2011 17:48

joaofonseca escreveu:Alguém consegue decifrar qual a expressão analitica deste gráfico?


joaofonseca escreveu:Este problema mostra que quem dominar as transformações de funções conseguirá resolver muitos problemas sobre funções de forma simples.
Pela observação do gráfico, pode-se identificar o gráfico parcial de duas parabolas.O gráfico parcial da parabola da direita é identico ao gráfico parcial da parabola da esquerda.Conclui-se que qualquer que tenha sido a transformação a que a função tenha sido sujeita, a função trasformada trata os valores negativos de x da mesma forma que os valores positivos de x.Qual é a operação matemática que devolve valores positivos independentemente dos valores introduzidos?

É o valor absoluto!Neste caso, como temos uma reflexão em relação ao eixo Oy, temos g(x)=f(|x|).Agora basta analizar a parte direita do gráfico e escrever a expressão analitica para a parabola.
Na expressão y=ax^2+bx+c, c=-2. Sabemos também que um dos zeros é o 2.Encontrar o outro zero é que se torna dificil.


Note que há infinitas parábolas tais que y(0) = -2 e y(2) = 0. Portanto, é necessário fazer mais alguma suposição para encontrar apenas uma expressão analítica.

Faça a suposição de que o vértice da parábola tem abscissa igual a 1/2. Isso é razoável com o gráfico. Vide a figura abaixo.

Transf_graph.jpg


Desse modo, sabemos que \frac{x_1 + x_2}{2} = \frac{1}{2} . Lembrando que x_1=2, temos que x_2 = -1 .

Além disso, sabemos que outra forma de escrever a parábola é dada por y = a(x-x_1)(x-x_2) , ou seja, podemos dizer que y = a(x-2)(x+1) . Agora lembrando que y(0) = -2, determinamos que a = 1. Isso significa que y = (x-2)(x+1) = x^2 - x - 2 .

Substituindo x por |x|, ficamos com y = |x|^2 - |x| - 2 , o que é o mesmo que y = x^2 - |x| - 2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}