por liviabgomes » Qui Dez 01, 2011 14:59

- anexo com a conta
podem me ajudar? tenho que fazer pela transformada de laplace??
brigada pela atenção.
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por LuizAquino » Dom Dez 04, 2011 12:08
liviabgomes escreveu:Resolva o seguinte problema de valor inicial


podem me ajudar? tenho que fazer pela transformada de laplace??
Você pode fazer pela Transformada de Laplace. Para isso, siga os passos abaixo.
Passo 1Aplique a Transformada de Laplace em cada equação.
![\begin{cases}
{\cal L}\left[\frac{dx}{dt}\right] = {\cal L}\left[2x - y + \textrm{sen}\,(2t)e^{2t}\right] \\
{\cal L}\left[\frac{dy}{dt}\right] = {\cal L}\left[4x + 2y + 2\cos(2t)e^{2t}\right] \\
\end{cases} \begin{cases}
{\cal L}\left[\frac{dx}{dt}\right] = {\cal L}\left[2x - y + \textrm{sen}\,(2t)e^{2t}\right] \\
{\cal L}\left[\frac{dy}{dt}\right] = {\cal L}\left[4x + 2y + 2\cos(2t)e^{2t}\right] \\
\end{cases}](/latexrender/pictures/37cae2d71e475668ee60fff69a818cfa.png)
![\begin{cases}
s{\cal L}\left[x\right] - x(0) = 2{\cal L}\left[ x\right] - {\cal L}\left[y \right] + {\cal L}\left[\textrm{sen}\,(2t)e^{2t} \right]\\
s{\cal L}\left[y\right] - y(0) = 4{\cal L}\left[ x\right] + 2{\cal L}\left[y \right] + 2{\cal L}\left[\cos(2t)e^{2t} \right] \\
\end{cases} \begin{cases}
s{\cal L}\left[x\right] - x(0) = 2{\cal L}\left[ x\right] - {\cal L}\left[y \right] + {\cal L}\left[\textrm{sen}\,(2t)e^{2t} \right]\\
s{\cal L}\left[y\right] - y(0) = 4{\cal L}\left[ x\right] + 2{\cal L}\left[y \right] + 2{\cal L}\left[\cos(2t)e^{2t} \right] \\
\end{cases}](/latexrender/pictures/097cb65d6cdf2f05a528bb576e42d59e.png)
Passo 2Resolva o sistema anterior para
![{\cal L}\left[x \right] {\cal L}\left[x \right]](/latexrender/pictures/c5dbcff8ffc04e553b59b9b812a0f831.png)
e
![{\cal L}\left[y \right] {\cal L}\left[y \right]](/latexrender/pictures/19f8e2275ea6c09a354531644c8ba5f9.png)
.
![{\cal L}\left[x\right] = -\frac{2}{(s-2)^2 + 4} + \frac{s-2}{(s-2)^2 + 4} {\cal L}\left[x\right] = -\frac{2}{(s-2)^2 + 4} + \frac{s-2}{(s-2)^2 + 4}](/latexrender/pictures/853073365d8682833b65f2a04313c089.png)
Passo 3Aplique a Transformada Inversa de Laplace na solução do sistema.

Passo 4Substitua as funções

e

no problema original para conferir a resposta.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por liviabgomes » Dom Dez 04, 2011 20:55
muito obrigada pela ajuda, foi muito válido.. eu tinha trancado na transformada, e não tinha feito ela inversa depois.. me clareou as ideias.. hahaha. Lá no final para substituir no problema original como eu faço? pego a resposta e boto no lugar de x(t) e y(t) e derivo para ver se da certo?
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por LuizAquino » Seg Dez 05, 2011 10:15
liviabgomes escreveu:Lá no final para substituir no problema original como eu faço? pego a resposta e boto no lugar de x(t) e y(t) e derivo para ver se da certo?
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por liviabgomes » Seg Dez 05, 2011 11:36
deeeu, brigada!
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Calculo de logaritmo) Resolva em R a seguinte equação
por andersontricordiano » Qua Ago 03, 2011 13:39
- 1 Respostas
- 1609 Exibições
- Última mensagem por Guill

Qua Ago 03, 2011 15:17
Logaritmos
-
- [Equação diferencial] Problema de valor inicial
por Aliocha Karamazov » Qua Fev 15, 2012 23:34
- 2 Respostas
- 1678 Exibições
- Última mensagem por Aliocha Karamazov

Qui Fev 23, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
-
- Equações diferenciais - problema de valor inicial
por emsbp » Qui Abr 12, 2012 18:14
- 0 Respostas
- 960 Exibições
- Última mensagem por emsbp

Qui Abr 12, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Resolva, em R, a seguinte inequação
por andersontricordiano » Sex Out 28, 2011 16:06
- 4 Respostas
- 2630 Exibições
- Última mensagem por TheoFerraz

Sex Out 28, 2011 16:55
Logaritmos
-
- Resolva em R a seguinte inequação:
por andersontricordiano » Sex Out 28, 2011 19:47
- 1 Respostas
- 1424 Exibições
- Última mensagem por Aliocha Karamazov

Sex Out 28, 2011 23:11
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.