• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidade/Limites

Continuidade/Limites

Mensagempor joaofonseca » Sáb Dez 03, 2011 19:40

Questão.jpg


Esta é uma questão de um exame nacional de Matematica em Portugal.
Eu consegui encontrar a resposta graficamente:

questao.jpg
questao.jpg (10.67 KiB) Exibido 2157 vezes


Como se pode ver quando x \to 0,f(x) \to 2.
Mas não consegui resolver analiticamente.Não consegui resolver a parte:

\lim_{x \to {0}^{+}} log_{2}(k+x)=2

Como é posivel resolver a equação logaritmica dentro do limite?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Continuidade/Limites

Mensagempor LuizAquino » Sáb Dez 03, 2011 20:49

joaofonseca escreveu:Mas não consegui resolver analiticamente.Não consegui resolver a parte:
\lim_{x \to {0}^{+}} log_{2}(k+x)=2

Como é posivel resolver a equação logaritmica dentro do limite?


Supondo que k>0, você pode resolver o limite diretamente:

\lim_{x \to {0}^{+}} \log_{2}(k+x)=2

\log_{2}(k+0)=2

\log_{2} k=2

k=2^2

k=4
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidade/Limites

Mensagempor joaofonseca » Sáb Dez 03, 2011 21:07

Então podemos afirmar que:

\lim_{x \to 0^+}log_{2}(k+x)=2

e

log_{2} \left[ \lim_{x \to 0^+}(k+x) \right]=2

são a mesma coisa?!?
Na segunda expressão, primeiro calcula-se o limite e depois resolve-se a equação logaritmica.

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Continuidade/Limites

Mensagempor LuizAquino » Sáb Dez 03, 2011 21:27

joaofonseca escreveu:Então podemos afirmar que:

\lim_{x \to 0^+}log_{2}(k+x)=2

e

log_{2} \left[ \lim_{x \to 0^+}(k+x) \right]=2

são a mesma coisa?!?


De modo geral, é verdadeira a seguinte afirmação:

Se f é contínua em L e \lim_{x\to c} g(x) = L, então \lim_{x\to c}{f(g(x))} = f\left(\lim_{x\to c}{g(x)}\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)