Terei que apresentá-lo resolvido semana que vem e já tem uns 5 dias que to quebrando a cabeça...
O problema é o seguinte:
Provar que se
e
são nulos, então
é um campo de quadrado inverso.Eu acredito que há um erro no enunciado, que o que realmente vale é a recíproca, pois no caso do enunciado acima podemos ter
e
nulos, porém
um campo constante qualquer e não necessariamente (como indica) um campo de quadrado inverso :Provar que se
é um campo de quadrado inverso, então
e
são nulos.Já tentei de várias formas, até mesmo usando o Teorema de Gauss (Teorema da divergência) e o teorema de Stokes, mas não sei como proceder.
Se o enunciado estiver correto, eu acredito que o problema seja simples de resolver mas queria que me ajudassem a encontrar a melhor resposta...
Desde já agradece quem se disponibilizar.

e
,
, temos que:



.
.





.
. Note que 
.![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)