• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANPEC-2009 Questão 14 - Integrais

ANPEC-2009 Questão 14 - Integrais

Mensagempor gjmiquel » Ter Nov 29, 2011 13:12

Seja f:\Re \rightarrow \Re uma função duas vezes diferenciável, tal que f(0)=f'(0)=1 e d^2f(x)/dx^2 + 2df(x)/dx + f(x)=0. Se A=ln[f(4)/9], calcule o valor de \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2.

Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?
gjmiquel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 29, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: formado

Re: ANPEC-2009 Questão 14 - Integrais

Mensagempor LuizAquino » Ter Nov 29, 2011 14:43

gjmiquel escreveu:Seja f: \Re \rightarrow \Re uma função duas vezes diferenciável, tal que f(0)=f'(0)=1 e d^2f(x)/dx^2 + 2df(x)/dx + f(x)=0. Se A=ln[f(4)/9], calcule o valor de \alpha=\left[{A\int_{0}^1e^{t}f(t)dt}\right]^2.


gjmiquel escreveu:Eu tentei diversas abordagens. A mais lógica e direta foi trabalhar através da expansão de Taylor, e dessa forma obter uma expressão para a função f(x). Outra abordágem foi trabalhar inicialmente através da integral definida. No entanto, em ambas as abordagens, o que causa um pouco de desconforto (hehehe) é que a expressão obtida para f(x) garante que f(4) seja um número negativo.
Alguma ajuda?


Primeiro resolva a EDO linear de 2ª ordem: f^{\prime\prime}(x) + 2f^\prime(x) + f(x) = 0 , sendo que f(0) = f^\prime(0) = 1 .

Após resolver a EDO você vai encontrar que f(x) = e^{-x} + 2xe^{-x} .

A partir daí fica fácil concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: ANPEC-2009 Questão 14 - Integrais

Mensagempor gjmiquel » Qua Nov 30, 2011 09:14

Muito obrigado. Minha cabeça parece não ter funcionado direito.....hehehehhe
Muito obrigado mesmo...
gjmiquel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 29, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}