por beel » Dom Nov 20, 2011 22:08
pra resolver essa integral por substituiçao
![\int_{1}^{2}x^3\sqrt[]{x^2 + 1}dx \int_{1}^{2}x^3\sqrt[]{x^2 + 1}dx](/latexrender/pictures/fef2e834b0bec0c6cf1b61e2fed977e0.png)
tomei o "u" como x³, mas meu resultado deu muito errado... o u é esse mesmo?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por beel » Ter Nov 22, 2011 13:29
Nessa ultima parte, nao teria que multiplicar (u-1) por x? ja que é x³ ( e x²= u -1 )
minha resposta ta o seguinte por enquanto:

-

...ai apliquei isso em 5 e depois em 2,
mas minha resposta deu um numero gigante com raiz inexata
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Ter Nov 22, 2011 19:14
Não, não tem pois eu já usei o x "extra" na mudança de variável, então não está faltando nada. E sim, a resposta é grande com números irracionais. Faltou um 2 dividindo tudo na minha resolução, conserte quando for resolver.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por beel » Dom Nov 27, 2011 15:50
minha resposta deu isso...
![\frac{1}{2}((\frac{2}{5}(\sqrt[]{3125}- \sqrt[]{32}) - \frac{2}{3}(\sqrt[]{125} - \sqrt[]{8})) \frac{1}{2}((\frac{2}{5}(\sqrt[]{3125}- \sqrt[]{32}) - \frac{2}{3}(\sqrt[]{125} - \sqrt[]{8}))](/latexrender/pictures/d39d90eacba9df4e0aa38cfaf066b01f.png)
verifiquei naquele site que voce ja sugeriu, mas lá o resultado é uma aproximação com numeros decimais e precisava da resposta em fração...na verdade nas alternativas das respostas,todas possuem tem raiz cubica e denominador 8, tentei chegar em alguma resposta assim mas nao consegui
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [calculo] calculo de integral - coordenada esferica
por fatalshootxd » Ter Mar 31, 2015 00:43
- 1 Respostas
- 4387 Exibições
- Última mensagem por adauto martins

Sáb Abr 04, 2015 16:13
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3532 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Cálculo de integral
por LAZAROTTI » Dom Set 30, 2012 19:52
- 0 Respostas
- 1134 Exibições
- Última mensagem por LAZAROTTI

Dom Set 30, 2012 19:52
Cálculo: Limites, Derivadas e Integrais
-
- cálculo de integral
por jmario » Ter Mai 18, 2010 12:25
- 1 Respostas
- 3186 Exibições
- Última mensagem por MarcosFreitas

Qua Jun 02, 2010 13:04
Cálculo: Limites, Derivadas e Integrais
-
- CALCULO DE INTEGRAL
por Jaison Werner » Sex Jan 07, 2011 18:58
- 4 Respostas
- 3010 Exibições
- Última mensagem por MarceloFantini

Sáb Jan 08, 2011 12:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.