• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com sen e logaritmo

Integral com sen e logaritmo

Mensagempor odra1974 » Sáb Nov 19, 2011 13:44

Bom dia
Estou tentando faz um dia e não consigo resolver a integral \int_{}^{}sen\left(log\left(x \right) \right)dx

O problema é que ao desenvolver o cálculo chego a um ponto e fico bloqueado, pois não consigo terminar com a integral.

Cheguei até aqui e acho que não dá saida para eliminar a integral, pois parece que entra num ciclo vicioso

\int_{}^{}sen\left(log\left(x \right) \right)dx=

=xsen\left(log\left(x \right) \right)-\int_{}^{}xcos\left(log\left(x \right) \right)\frac{1}{x}dx

Me ajudem...

Abraços
odra1974
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 19, 2011 13:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Integral com sen e logaritmo

Mensagempor LuizAquino » Sáb Nov 19, 2011 14:53

odra1974 escreveu:Estou tentando faz um dia e não consigo resolver a integral \int \textrm{sen}\,\left(\log\left(x \right) \right)\,dx
(...)
Cheguei até aqui e acho que não dá saida para eliminar a integral, pois parece que entra num ciclo vicioso

\int \textrm{sen}\,\left(\log\left(x \right) \right)\,dx = x \textrm{sen}\,\left(\log\left(x \right) \right) - \int x\cos\left(\log\left(x \right) \right)\frac{1}{x}\,dx


Você está usando a convenção de que \log x representa o logaritmo natural? Isto é, o logaritmo na base e?

Se for isso, então de fato você pode usar que (\log x)^\prime = \frac{1}{x} quando aplicar a integração por partes.

Mas se por outro lado você está usando a convenção de que \log x representa o logaritmo na base 10, então lembre-se que (\log x)^\prime = \frac{1}{x\ln 10} (onde aqui "ln" representa o logaritmo natural -- ou seja, na base e).

Vou considerar que você está usando a convenção de que \log x representa \ln x .

Para continuar a resolução, faça u = \cos \left( \ln x \right) e dv = dx . Dessa forma, note que:

\int \textrm{sen}\,\left(\ln x \right)\,dx = x \textrm{sen}\,\left(\ln x \right) - \left(x\cos \left( \ln x \right) - \int -x\textrm{sen}\,\left( \ln x \right)\frac{1}{x}\, dx\right)

\int \textrm{sen}\,\left(\ln x \right)\,dx = x \textrm{sen}\,\left(\ln x \right) - x\cos \left( \ln x \right) - \int \textrm{sen}\,\left( \ln x \right)\, dx

\int \textrm{sen}\,\left( \ln x \right)\, dx + \int \textrm{sen}\,\left(\ln x \right)\,dx = x \textrm{sen}\,\left(\ln x \right) - x\cos \left( \ln x \right)

2\int \textrm{sen}\,\left(\ln x \right)\,dx = x \textrm{sen}\,\left(\ln x \right) - x\cos \left( \ln x \right)

\int \textrm{sen}\,\left(\ln x \right)\,dx = \frac{1}{2}\left[x \textrm{sen}\,\left(\ln x \right) - x\cos \left( \ln x \right)\right] + c
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral com sen e logaritmo

Mensagempor odra1974 » Sáb Nov 19, 2011 22:49

Puxa! Muito obrigado! Essa passagem parece que foi mágica! Afinal, é tão simples...
odra1974
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 19, 2011 13:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.