• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômio Divisível

Polinômio Divisível

Mensagempor Cleyson007 » Seg Mai 18, 2009 14:50

Boa tarde!

Gostaria de saber se estou resolvendo corretamente o exercício abaixo. Desde já agradeço a atenção de todos.

--> Calcule os valores de a e b para que o polinômio p(x)={x}^{3}+ax+b seja divisível por g(x)=({x-1})^{2}.

g(x)=({x-1})^{2} --> g(x)={x}^{2}-2x+1

Se p(x) é de Grau 3 e é divisível por g(x) que é de Grau 2, o quociente q(x) é de Grau 1 q(x)=ax+b.

Aplicando q(x)*g(x)+r(x)=p(x) estou encontrando a equação: a{x}^{3}+{x}^{2}(b-2a)+x(-2b+a)+b={x}^{3}+0{x}^{2}+ax+b

Da igualdade dos polinômios estou encontrando:

a=1

b=2

Obrigado pela ajuda :-O

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Polinômio Divisível

Mensagempor Molina » Ter Mai 19, 2009 04:52

Boa noite, Cleyson.

Desculpe a demora pela resposta. Só tive tempo agora...

É quase isso sua resposta.
Mas acho que você está se equivocando, ao achar que o mesmo a utilizado em x^3 + ax + b é utilizado em ax+b. Tanto que se você substituir os valores que você encontrou (a=1 e b=2) a divisão não dá exata.

Fazendo a divisão de x^3+0x^2+ax+b por x^2-2x+1 acho que é mais fácil não se confundir.
Só deixei o polinômio completo para facilitar na divisão.

Fazendo isso, você chegará em um momento em que:
(a-1)x +4x terá que ser igual a 0 (para não haver resto).
Logo, a-1+4=0 \Rightarrow a = -3

E que b-2 também será igual a 0, pelo mesmo motivo anterior.
Logo b-2 = 0 \Rightarrow b=2

Depois disso jogue os valores obtidos em a e b no polinômio e divida pelo divisor.
Você irá chegar em um polinômio de primeiro grau (como você já havia previsto) e o resto será zero.

Qualquer dúvida, exponha aqui!

Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Polinômio Divisível

Mensagempor Cleyson007 » Ter Mai 19, 2009 14:43

Boa tarde, Molina.

Realmente... fiz o teste substituindo os valores de a e b e o resto não é nulo.

Mas como identificar que o a utilizado em x^3 + ax + b é diferente do utilizado em ax+b.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Polinômio Divisível

Mensagempor DanielFerreira » Ter Set 22, 2009 13:02

g(x) = (x - 1)²
g(x) = x² - 2x + 1

divida p(x) por g(x) e terá como quociente (x + 2), e como resto (ax + 3x + b - 2).

se é divisível, o resto é zero!
ax + 3x + b - 2 = 0
(a + 3)x + (b - 2) = 0

a + 3 = 0
a = - 3

b - 2 = 0
b = 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}