Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Molina » Qui Abr 23, 2009 01:24
Um amante da matemática deseja descobrir a quantidade de degraus que são visíveis numa escada rolante em pleno movimento. Para solucionar isto, foi feito o seguinte procedimento: Duas mulheres começaram a subir, no mesmo momento (juntas), a escada; uma subindo um degrau de cada vez enquanto que a outra subia dois degraus de cada vez. Por fim, ao chegar ao topo, a primeira mulher contou o total de 21 degraus enquanto a outra, 28 degraus.
Apenas com esses dados o amante da matemática conseguiu responder o problema.
Quantos degraus são visíveis nessa escada rolante?
Lembrando que o nível do desafio é relativo. Por isso classifiquei-o como mediano

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Abr 24, 2009 20:11
Ola
Essa questão é muito trivial.
Nos poderiamos dizer que tem 28 porque a mulher ando 28 degraus, mas tem a velocidade contraria do elevador que atrapalha.
Poderiamos dizer que é 21 pois outra mulher foi de 2 em 2, e poderiamos considerar que ela ando de 1 e 1, por causa da força contraria da escada rolante.
Mas acredito que a verdadeira resposta seja algo em torno de 14 degraus.
Eu entendi que a diferença de uma escada para outra x 2 seria a resposta, mas sinceramente foi soh um palpite.
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Molina » Sex Abr 24, 2009 20:39
Maligno.. Lembre-se que a é apenas UMA escada.
=)
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Abr 24, 2009 21:04
Ola
Desculpe Molina me expressei mal.
A diferença da duas mulheres subindo a escada rolante... Então
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por rafagondi » Sáb Abr 25, 2009 16:53
Eu tentei resolver o problema, mas acho que o interpretei errado =/.
Eu consiferei que as mulheres não contavam os degraus em que pisavam.
Cheguei a conclusão de que elas andaram 42 ou 43 degraus.

Mas como não tenho a velocidade com que a escada anda, ou a velocidade com que elas andaram, ou se a velocidade em que elas andaram e diferente. Enfim, o meu problema seu todo errado =/.
________________________________________________
Rafael Agondi - Física/Matemática Bacharelado UNICAMP
-

rafagondi
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Abr 23, 2009 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Licenciatura - UNICAMP
- Andamento: cursando
por ginrj » Dom Jun 07, 2009 14:54
encontrei 26 :S, correto?
Os números governam o Universo
-
ginrj
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Sex Mar 06, 2009 18:28
- Localização: Rio de Janeiro
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Pré.Militar
- Andamento: cursando
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Volume da Escada
por Joana Gabriela » Seg Ago 02, 2010 15:14
- 1 Respostas
- 4370 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 06:29
Geometria Espacial
-
- Forma Escada Reduzida por Linhas
por ricardotdai » Seg Abr 19, 2010 03:24
- 2 Respostas
- 4376 Exibições
- Última mensagem por ricardotdai

Ter Abr 20, 2010 01:25
Matrizes e Determinantes
-
- Desafio
por Guarinense » Sex Nov 10, 2017 22:25
- 0 Respostas
- 5655 Exibições
- Última mensagem por Guarinense

Sex Nov 10, 2017 22:25
Teoria dos Números
-
- Desafio dos Dez Pontos
por Molina » Sáb Jul 12, 2008 00:02
- 6 Respostas
- 5310 Exibições
- Última mensagem por admin

Dom Jul 13, 2008 17:00
Desafios Fáceis
-
- Desafio de lógica
por Twister » Qua Ago 13, 2008 21:46
- 10 Respostas
- 10049 Exibições
- Última mensagem por andymath

Qua Mar 31, 2010 19:14
Desafios Enviados
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.