• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Problema de Valor Intermediário

[Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 00:18

Se a e b são números positivos, demonstre que a equação a seguir tem pelo menos uma solução no intervalo (-1, 1).

\frac{a}{{x}^{3}+2{x}^{2}-1}+\frac{b}{{x}^{3}+x-2}=0

Cálculo 6 ed., James Stewart, p.117, q.62.


Já perdi horas com isso, e não há resposta em parte alguma. Como chutando valores de x no intervalo (-1, 1), geralmente se obtém parcelas negativas e, portanto, resposta negativa, minha estratégia foi tentar mostrar que ambas as parcelas são positivas num dado sub-intervalo dentro de (-1,1). Se eu conseguisse isto, mostraria que a função da esquerda (a soma à esquerda da igualdade, digo) varia entre valores negativos e positivos e, portanto, passa por zero - pois é uma função contínua e definida dentro do intervalo pedido.

No entanto fracassei.

Como a e b são positivos, cada parcela será positiva quando o denominador for positivo.

x³ + 2x² - 1 é positivo dentro do intervalo (-1,1) para 0.618 < x < 1.

* Esse 0.618 é aproximação de \frac{\sqrt[]{5}-1}{2}

Mas x³ + x - 2 nunca é positivo dentro intervalo! Só para x > 1.

Então, aparentemente, eu precisaria mostrar que, nos casos em que a 1ª parcela é positiva (em 0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva como preciso, rs. Acho que isso é demais pra mim, hehehe.

Imagino que a real solução seja mais simples, com outra estratégia.

Se alguém puder ajudar, ficaria grato.

Obrigado pela atenção.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor MarceloFantini » Seg Out 03, 2011 01:07

Como o intervalo é aberto em -1 e 1, podemos multiplicar tudo por (x^3 +2x^2 -1)(x^3 +x -2) e obteremos a(x^3 +x -2) +b(x^3 +2x^2 -1) =0. Agora considere esta relação no intervalo [-1,1], ou seja, fechado em -1 e 1. Quando x=-1, nós temos a(-1+1-2)+b(0) = -2a < 0. Tomando x=1, teremos a(0)+b(1+2-1)=2b > 0, logo pelo Teorema de Bolzano a equação tem pelo menos uma raíz real no intervalo (-1,1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 01:37

Sensacional, Marcelo! :-D Muito obrigado.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 02:12

O tópico está resolvido, mas seria desperdício eu não perguntar o seguinte: minha linha de raciocínio tem alguma saída simples? Isto é, tem algum jeito praticável de, como eu disse

mostrar que, nos casos em que a 1ª parcela é positiva (em 0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva
?

Obviamente não é urgente, rs. Mas se alguém por acaso souber, enriqueceria o tópico.
Eu na verdade nem mesmo tentei. Estava cansado, hehe.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: