• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 2] Taxa de variação

[Cálculo 2] Taxa de variação

Mensagempor -civil- » Qui Set 29, 2011 15:55

O raio de um cone circular reto aumenta 1,8 pol/s mas a altura decresce a taxa de 2,5 pol/s. Qual a taxa de variação do volume do cone, quando o raio vale 120 pol e altura h = 140 pol?

Eu li a matéria no Stewart mas não entendi muito bem. Eu simplesmente calculei as derivadas parciais em relação ao volume, no ponto (120,140). Está certo resolver desse jeito?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Cálculo 2] Taxa de variação

Mensagempor LuizAquino » Sex Set 30, 2011 18:55

Sabemos que o volume de um cone circular reto, com raio da base r e altura h, é dado por V = \frac{1}{3}\pi r^2 h .

Podemos então enxergar o volume como uma função de duas variáveis, isto é, podemos escrever V(r,\,h) = \frac{1}{3}\pi r^2 h .

Nesse exercício, tanto o raio quanto a altura estão variando com o passar do tempo. Dessa forma, podemos enxergar o raio e a altura como funções do tempo.

Isso significa que no final das contas V também é uma função do tempo.

Aplicando então a regra da cadeia para derivar V em relação ao tempo, temos que:

\frac{dV}{dt} = \frac{\partial V}{\partial r}\frac{dr}{dt} + \frac{\partial V}{\partial h}\frac{dh}{dt}

Sendo assim, temos que:

\frac{dV}{dt} = \frac{2\pi r h}{3}\frac{dr}{dt} + \frac{\pi r^2}{3}\frac{dh}{dt}

Agora basta aplicar os dados do exercício, de onde temos que \frac{dr}{dt} = 1,8, \frac{dh}{dt} = -2,5, r = 120 e h = 140 .
Editado pela última vez por LuizAquino em Sáb Out 01, 2011 09:34, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Cálculo 2] Taxa de variação

Mensagempor -civil- » Qua Out 05, 2011 05:36

Agora sim, entendi. Muito obrigada!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}