• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Como mostrar esse lim?

[LIMITE] Como mostrar esse lim?

Mensagempor jandercw » Seg Set 19, 2011 17:17

Olá! Boa tarde! Como demonstro que lim pra x tendendo a 0, de tg(2x) dividido por tg(?x) é igual a 2/? ???
Tentei abrir em sen/cos, mas não consegui simplificar para justificar.
Alguem sabe como justifico isso?
Obrigado!
jandercw
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 19, 2011 17:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [LIMITE] Como mostrar esse lim?

Mensagempor MarceloFantini » Seg Set 19, 2011 17:35

Note que \lim_{x \to 0} \frac{\tan (2x)}{\tan (\pi x)} = \lim_{x \to 0} \frac{\sin (2x)}{\cos (2x)} \cdot \frac{\cos (\pi x)}{\sin (\pi x)}. Multiplicando numerador e denominador por 2 \pi x, temos:

\lim_{x \to 0} \frac{\sin (2x)}{2x} \cdot \frac{1}{\cos (2x)} \cdot \cos (\pi x) \cdot \frac{1}{\frac{\sin (\pi x)}{\pi x}} \cdot \frac{2}{\pi}

Lembrando do limite fundamental \lim_{k \to 0} \frac{\sin k}{k} = 1, temos a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.