• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limimite] Limite de sequência e teorema do confronto

[Limimite] Limite de sequência e teorema do confronto

Mensagempor Aliocha Karamazov » Qui Set 15, 2011 21:01

Caros, quero fazer esse exercício, mas não tive nenhuma ideia para iniciar. Gostaria de receber alguma dica para poder encaminhar minha resolução. O exercício é esse:

Mostre, usando o teorema do confronto, que, se a_{n}->0, então, \lim_{n\to\infty}sen(a_{n})=0

Conclua então que, se a_{n}->0, então \lim_{n\to\infty}cos(a_{n})=1
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limimite] Limite de sequência e teorema do confronto

Mensagempor MarceloFantini » Sex Set 16, 2011 00:46

Note que podemos afirmar que 0 \leq |\textrm{sen}(a_n)| \leq |a_n|. Aplicando o teorema do confronto, o limite da esquerda vai para zero, o limite da direita vai para zero, e portanto o limite \lim_{n \to \infty} \textrm{sen }(a_n) = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limimite] Limite de sequência e teorema do confronto

Mensagempor Aliocha Karamazov » Sex Set 16, 2011 00:51

MarceloFantini escreveu:Note que podemos afirmar que 0 \leq |\textrm{sen}(a_n)| \leq |a_n|. Aplicando o teorema do confronto, o limite da esquerda vai para zero, o limite da direita vai para zero, e portanto o limite \lim_{n \to \infty} \textrm{sen }(a_n) = 0.


Por que podemos afirmar que 0 \leq |\textrm{sen}(a_n)| \leq |a_n|?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limimite] Limite de sequência e teorema do confronto

Mensagempor MarceloFantini » Sex Set 16, 2011 01:04

Pois f(x) = x - \textrm{sen } x é não decrescente, e o único intervalo onde isto poderia dar problema é 0 < x < \frac{\pi}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limimite] Limite de sequência e teorema do confronto

Mensagempor Aliocha Karamazov » Sex Set 16, 2011 01:42

Desculpe, Marcelo, mas será que você poderia detalhar um pouco mais seu raciocínio? Ainda não entendi por que 0 \leq |\textrm{sen}(a_n)| \leq |a_n|.

O que podemos afirmar sobre a_{n} é que essa sequência tende a zero, quando n tende ao infinito. Mas como isso implica que seu módulo é sempre maior que o módulo de sen(a_{n})? Isso vem de alguma prova geométrica?

Tendo outra dúvida. Consegui provar de outra maneira:
Utilizando essa desigualdade, que pode ser demonstrada geometricamente:

0<cos(x)<\frac{sen(x)}{x}<\frac{1}{cos(x)}

Escrevendo em função de a_{n}:

0<cos(a_{n})<\frac{sen(a_{n})}{a_{n}}<\frac{1}{cos(a_{n})}

Multiplicando tudo por a_{n}:

cos(a_{n})a_{n}<sen(a_{n})<\frac{a_{n}}{cos(a_{n})}

Mas,

\lim_{n\to\infty}cos(a_{n})a_{n}=\lim_{n\to\infty}\frac{a_{n}}{cos(a_{n})}=0

E, pelo teorema do confronto, se a_{n} \shortrightarrow 0, \lim_{n\to\infty}sen(a_{n})=0

Agora que vem minha dúvida. Para essa demonstração, eu utilizei \lim_{n\to\infty}cos(a_{n})=1 (já tomando isso com verdadeiro). E, para mostrar que \lim_{n\to\infty}cos(a_{n})=1 (que é a outra parte do exercício), é preciso utilizar a_{n}->0, \lim_{n\to\infty}sen(a_{n})=0.
Ou seja, para demonstrar a propriedade A, usa-se a propriedade B; e, para demonstar B, usa-se A. Pode fazer isso? Supondo que B fosse falsa, se B implica A, como saber que A também não é falsa?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limimite] Limite de sequência e teorema do confronto

Mensagempor MarceloFantini » Sex Set 16, 2011 16:56

Esta é uma relação que vale para qualquer x real, em particular para a sequência que você está trabalhando. Não sei a demonstração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?