• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinante

Determinante

Mensagempor Claudin » Qui Set 15, 2011 20:57

Para resolver o determinante de uma matriz 4x4, deve-se fazer primeiramente o calculo através do cofator.
Sendo assim eu calculava o cofator da linha que possuía mais zeros para facilitar as contas, ate aí certo?
Porém logicamente, resulta em uma matriz 3x3, e ai não podendo utilizar o método de Sarrus, ou seja, calcular det 3x3, por cofator também, estou errando, pois o determinante agora acaba recebendo multiplicação de alguns escalares e isso fez eu errar. Alguém ajuda?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinante

Mensagempor Claudin » Qui Set 15, 2011 21:15

Por exemplo na matriz

\begin{bmatrix}
2 & 0 & 1 & 4 \\
2 & 3 & -1 & 0 \\
1 & 2 & -5 & -6 \\
8 & 4 & -7 & 0
\end{bmatrix}

Sendo assim o A14 pois á coluna onde tem mais zero
ai resulta na 3x3
e calculando o determinante da 3x3 da -75, ai não sei o que fazer para calcular o det da 4x4, sendo que não posso utilizar método de Sarrus para calcular det de matriz 3x3
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinante

Mensagempor LuizAquino » Sex Set 16, 2011 00:13

Claudin escreveu:Por exemplo na matriz

\begin{bmatrix}
2 & 0 & 1 & 4 \\
2 & 3 & -1 & 0 \\
1 & 2 & -5 & -6 \\
8 & 4 & -7 & 0
\end{bmatrix}

Sendo assim o A14 pois á coluna onde tem mais zero
ai resulta na 3x3
e calculando o determinante da 3x3 da -75, ai não sei o que fazer para calcular o det da 4x4, sendo que não posso utilizar método de Sarrus para calcular det de matriz 3x3

Uma correção: método de Sarrus pode ser aplicado apenas para calcular o determinante de matrizes 3 por 3.

Uma maneira mais conveniente para calcular o determinante de uma matriz é transformando-a em uma matriz triangular equivalente, como eu já indiquei para você no tópico abaixo:
Matriz
viewtopic.php?f=111&t=5958

Entretanto, considerando que você quer resolver o determinante dessa matriz por cofator, então você deve seguir algo como ilustrado a seguir.

Escolhendo a quarta coluna, temos que:
\det A = (-1)^{1+4}a_{14}\det \tilde{A}_{14} + (-1)^{2+4}a_{24}\det \tilde{A}_{24} + (-1)^{3+4}a_{34}\det \tilde{A}_{34} + (-1)^{4+4}a_{44}\det \tilde{A}_{44}

Lembrando que a_{24} = a_{44} = 0, a_{14} = 4, a_{34} = -6 e resolvendo as potências, ficamos apenas com:
\det A = -4\det \tilde{A}_{14} + 6\det \tilde{A}_{34}

Agora devemos resolver o determinante das matrizes menores:

\det \tilde{A}_{14} = \begin{vmatrix}
2 & 3 & -1 \\
1 & 2 & -5 \\
8 & 4 & -7
\end{vmatrix} = -75

\det \tilde{A}_{34} = \begin{vmatrix}
2 & 0 & 1 \\
2 & 3 & -1 \\
8 & 4 & -7
\end{vmatrix} = -50

Temos então no final que:
\det A = -4(-75) + 6(-50) = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}