• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinante

Determinante

Mensagempor Claudin » Qui Set 15, 2011 20:57

Para resolver o determinante de uma matriz 4x4, deve-se fazer primeiramente o calculo através do cofator.
Sendo assim eu calculava o cofator da linha que possuía mais zeros para facilitar as contas, ate aí certo?
Porém logicamente, resulta em uma matriz 3x3, e ai não podendo utilizar o método de Sarrus, ou seja, calcular det 3x3, por cofator também, estou errando, pois o determinante agora acaba recebendo multiplicação de alguns escalares e isso fez eu errar. Alguém ajuda?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinante

Mensagempor Claudin » Qui Set 15, 2011 21:15

Por exemplo na matriz

\begin{bmatrix}
2 & 0 & 1 & 4 \\
2 & 3 & -1 & 0 \\
1 & 2 & -5 & -6 \\
8 & 4 & -7 & 0
\end{bmatrix}

Sendo assim o A14 pois á coluna onde tem mais zero
ai resulta na 3x3
e calculando o determinante da 3x3 da -75, ai não sei o que fazer para calcular o det da 4x4, sendo que não posso utilizar método de Sarrus para calcular det de matriz 3x3
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Determinante

Mensagempor LuizAquino » Sex Set 16, 2011 00:13

Claudin escreveu:Por exemplo na matriz

\begin{bmatrix}
2 & 0 & 1 & 4 \\
2 & 3 & -1 & 0 \\
1 & 2 & -5 & -6 \\
8 & 4 & -7 & 0
\end{bmatrix}

Sendo assim o A14 pois á coluna onde tem mais zero
ai resulta na 3x3
e calculando o determinante da 3x3 da -75, ai não sei o que fazer para calcular o det da 4x4, sendo que não posso utilizar método de Sarrus para calcular det de matriz 3x3

Uma correção: método de Sarrus pode ser aplicado apenas para calcular o determinante de matrizes 3 por 3.

Uma maneira mais conveniente para calcular o determinante de uma matriz é transformando-a em uma matriz triangular equivalente, como eu já indiquei para você no tópico abaixo:
Matriz
viewtopic.php?f=111&t=5958

Entretanto, considerando que você quer resolver o determinante dessa matriz por cofator, então você deve seguir algo como ilustrado a seguir.

Escolhendo a quarta coluna, temos que:
\det A = (-1)^{1+4}a_{14}\det \tilde{A}_{14} + (-1)^{2+4}a_{24}\det \tilde{A}_{24} + (-1)^{3+4}a_{34}\det \tilde{A}_{34} + (-1)^{4+4}a_{44}\det \tilde{A}_{44}

Lembrando que a_{24} = a_{44} = 0, a_{14} = 4, a_{34} = -6 e resolvendo as potências, ficamos apenas com:
\det A = -4\det \tilde{A}_{14} + 6\det \tilde{A}_{34}

Agora devemos resolver o determinante das matrizes menores:

\det \tilde{A}_{14} = \begin{vmatrix}
2 & 3 & -1 \\
1 & 2 & -5 \\
8 & 4 & -7
\end{vmatrix} = -75

\det \tilde{A}_{34} = \begin{vmatrix}
2 & 0 & 1 \\
2 & 3 & -1 \\
8 & 4 & -7
\end{vmatrix} = -50

Temos então no final que:
\det A = -4(-75) + 6(-50) = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D