• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] assintotas duvida

[limite] assintotas duvida

Mensagempor beel » Ter Set 06, 2011 13:37

O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?Tenho que fazer então \lim_{x\rightarrow ^- ^+ a} ( limites laterais). Como confirmo se esse numero a, é a assintota vertical?
Se por exemplo o \lim_{x\rightarrow ^-  a} = - \infty

\lim_{x \rightarrow ^+ a} = + \infty
( limites laterias nao coincidem...)

A assintota existe?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [limite] assintotas duvida

Mensagempor LuizAquino » Ter Set 06, 2011 20:46

isanobile escreveu:O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?

Mais ou menos isso. Lembre-se que a assíntota vertical é uma reta e não um número. Desse modo, o certo é dizer que a reta x = a é uma candidata a assíntota vertical.

isanobile escreveu:Tenho que fazer então \lim_{x\to a^-} f(x) e \lim_{x\to a^+} f(x) ( limites laterais).

Sim.

isanobile escreveu:Como confirmo se esse numero a, é a assintota vertical?

A reta x = a será uma assíntota vertical se qualquer um dos três limites acontecer:

(i) \lim_{x\to a} f(x) = \infty

(ii) \lim_{x\to a^-} f(x) = \infty

(iii) \lim_{x\to a^+} f(x) = \infty

(*) Vale lembrar que o resultado do limite pode ser mais infinito ou menos infinito.

isanobile escreveu:Se por exemplo o \lim_{x\to a^-} f(x) = - \infty e \lim_{x \to a^+} f(x)= + \infty
( limites laterias nao coincidem...)

A assintota existe?

Sim, existe a assíntota. O que não existe seria o limite \lim_{x\to a} f(x).

Por exemplo, considere a função f(x) = \frac{1}{x-1} .

Note que temos:

\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \frac{1}{x-1} = -\infty

\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{1}{x-1} = +\infty

Desse modo, não existe o limite \lim_{x\to 1} f(x) (já que os limites laterais são distintos), mas a reta x = 1 existe e representa uma assíntota vertical do gráfico de f. Veja a figura abaixo.

grafico.png
grafico.png (4.81 KiB) Exibido 1534 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] assintotas duvida

Mensagempor beel » Dom Out 16, 2011 16:57

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.