• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Topologia do Espaço Euclidiano R^n

Topologia do Espaço Euclidiano R^n

Mensagempor 380625 » Qua Ago 17, 2011 18:15

Estou estudando o conceito de bola aberta e não consigo entender o que é um ponto interior a uma bola aberta.

Desculpa pela pouca informação pois estou muito confuso.
Grato
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Topologia do Espaço Euclidiano R^n

Mensagempor MarceloFantini » Qua Ago 17, 2011 20:41

Qual a sua dúvida, especificamente? Talvez algum exercício ou definição que não tenha ficado clara. Soa como se você estivesse confundindo conceitos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Topologia do Espaço Euclidiano R^n

Mensagempor marciosouza » Dom Abr 14, 2013 17:41

PONTO INTERIOR, segue da definição de que:

Def. Seja A(contido em)M e A(diferente de vazio). dizemos que um ponto x é interior de A, se existir uma bola aberta centrada em x e contida em A, de modo que:x\in Int(A)\Leftrightarrow \exists B(x,r)\subset A

Como exemplo:

Considere em R2 o conjunto dos pontos interiores à uma circunferência de centro (1,1)... todos os pontos internos à circunferência compõe a B(x,1) aberta ***já que os pontos sobre a circunferência pertencem à ela mas não são internos à mesma.
marciosouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 20, 2011 16:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)