• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Claudin » Sex Ago 05, 2011 03:02

Não consigo encontrar uma maneira mais fácil de fatorar, tais expressões, alguém poderia passar algumas dicas. E peço também para que alguém verifique se a resolução está correta. (O exercício pede para que simplifique o máximo possível).

Deduzindo algumas raízes e utilizando o WolframAlpha, gostaria de saber se tem algumas dicas para fatoração de polinômios.

Resolução:

\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

Dividindo o numerador por 3 obtive:

\frac{ax-bx-2a+2b}{2b-2a-bx+ax}= \boxed{1}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatoração

Mensagempor FilipeCaceres » Sex Ago 05, 2011 12:20

Claudin escreveu:Não consigo encontrar uma maneira mais fácil de fatorar, tais expressões, alguém poderia passar algumas dicas. E peço também para que alguém verifique se a resolução está correta. (O exercício pede para que simplifique o máximo possível).

Deduzindo algumas raízes e utilizando o WolframAlpha, gostaria de saber se tem algumas dicas para fatoração de polinômios.

Resolução:

\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

Dividindo o numerador por 3 obtive:

\frac{ax-bx-2a+2b}{2b-2a-bx+ax}= \boxed{1}


Se você realmente usar o WolframAlpha verá que a sua solução está errada, veja
Código: Selecionar todos
http://www.wolframalpha.com/input/?i=\frac{3ax-3bx-6a%2B6b}{2b-2a-bx%2Bax}


Temos,
\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

\frac{3.(ax-bx-2a+2b)}{2b-2a-bx+ax}= \boxed{3}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.