• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Claudin » Sex Ago 05, 2011 03:02

Não consigo encontrar uma maneira mais fácil de fatorar, tais expressões, alguém poderia passar algumas dicas. E peço também para que alguém verifique se a resolução está correta. (O exercício pede para que simplifique o máximo possível).

Deduzindo algumas raízes e utilizando o WolframAlpha, gostaria de saber se tem algumas dicas para fatoração de polinômios.

Resolução:

\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

Dividindo o numerador por 3 obtive:

\frac{ax-bx-2a+2b}{2b-2a-bx+ax}= \boxed{1}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatoração

Mensagempor FilipeCaceres » Sex Ago 05, 2011 12:20

Claudin escreveu:Não consigo encontrar uma maneira mais fácil de fatorar, tais expressões, alguém poderia passar algumas dicas. E peço também para que alguém verifique se a resolução está correta. (O exercício pede para que simplifique o máximo possível).

Deduzindo algumas raízes e utilizando o WolframAlpha, gostaria de saber se tem algumas dicas para fatoração de polinômios.

Resolução:

\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

Dividindo o numerador por 3 obtive:

\frac{ax-bx-2a+2b}{2b-2a-bx+ax}= \boxed{1}


Se você realmente usar o WolframAlpha verá que a sua solução está errada, veja
Código: Selecionar todos
http://www.wolframalpha.com/input/?i=\frac{3ax-3bx-6a%2B6b}{2b-2a-bx%2Bax}


Temos,
\frac{3ax-3bx-6a+6b}{2b-2a-bx+ax}

\frac{3.(ax-bx-2a+2b)}{2b-2a-bx+ax}= \boxed{3}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.