• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 03:10

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}


Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:17

Olá Claudin,

Tente resolver conforme este aqui

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 16:07

Já tentei de várias formas
Sendo: u=\sqrt[3]{3x+5} com 3x=u-5\Rightarrowx=\frac{u-5}{3}

Tentei racionalizando também, mas não consegui.

Estou errando principalmente, pois no numerador seria 3x dentro da raiz, e no numerador seria um x², ai na hora de substituir os valores estou errando.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 17:15

Olá Claudin,

Uma forma seria reescrever da seguinte formar
\lim_{x\rightarrow1}\frac{(\sqrt[3]{3x+5}-\sqrt[3]{8})}{x^2-1}.\frac{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}

Assim temos,
\lim_{x\rightarrow1}\frac{3\cancel{(x-1)}}{\cancel{(x-1)}(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}, pois x\neq 1

Logo,
\lim_{x\rightarrow1}\frac{3}{(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}=\frac{3}{2.(4+2.2+4)}=\frac{3}{2.12}=\boxed{\frac{1}{8}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:24

Mas quando aplica-se a racionalização não era pra ficar assim?

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 17:39

Outra forma,

Temos,
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}

Façamos o seguinte
u=\sqrt[3]{3x+5},logo x=\frac{u^3-5}{3} como x\to 1 entãou\to2, pois u=\sqrt[3]{3.1+5}=2

Assim temos,
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{(x-1)(x+1)}=\lim_{u\rightarrow2}\frac{u-2}{(\frac{u^3-5}{3}-1)(\frac{u^3-5}{3}+1)}

\lim_{u\rightarrow2}\frac{9(u-2)}{(u^3-8)(u^3-2)}

Fazendo,
u^3-8=(u-2)(u^2+2u+4)

Temos,
\lim_{u\rightarrow2}\frac{9\cancel{(u-2)}}{\cancel{(u-2)}(u^2+2u+4)(u^3-2)},pois u\neq 2

\lim_{u\rightarrow2}\frac{9}{(u^2+2u+4)(u^3-2)}=\frac{9}{12.6}=\boxed{\frac{1}{8}}

Mas quando aplica-se a racionalização não era pra ficar assim?
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}


Não.

Tente mostrar que:
x-y=(\sqrt[3]{x}-\sqrt[3]{y})(\sqrt[3]{x^2}+\sqrt[3]{x.y}+\sqrt[3]{y^2})

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 18:06

Você racionalizou aplicando o produto notável (a-b)^3. Somente, por ter uma raiz cúbica no exercício correto?
Se fosse uma raiz quadrada poderia racionalizar sem aplicação de produto notável, como fiz na ultima mensagem deste tópico ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 18:13

FilipeCaceres escreveu:Outra forma,
\lim_{u\rightarrow2}\frac{9(u-2)}{(u^3-8)(u^3-2)}


Não compreendi como apareceu este 9, no numerador.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: