por Neperiano » Qui Fev 12, 2009 11:15
Ola
Essa é uma duvida de uma pessoa no chat.
Eu mais ou menos acho que sei, mas é que não aprendi ainda, dai naum tenho certeza.
Bom vamos a ela.
Um cubo tem 1,00m .calcule sua area total com aresta2?
Ele respondeu p=1*1=12.
Aproveitando q ele quer saber se esta certo, eu gostaria de saber como se faz pra chegar lah, pq quero aprender tambem.
Obrigado
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Molina » Qui Fev 12, 2009 18:50
Boa tarde, Maligno.
Obrigado por colocar aqui dúvidas de pessoas do chat.
Mas não entendi muito bem o enunciado:
Um cubo tem 1,00m .calcule sua area total com aresta2?
seria 1,00m³ ? ou tem arestas de 1 metro? acho que faltou alguma coisa ali.
outra duvida o que seria
aresta2?
Ele respondeu p=1*1=12.
1 vezes 1 = 12?
Tente esclarecer essas minhas dúvidas que assim que possível eu coloco o resultado.
Abraços

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Qui Fev 12, 2009 20:09
Ola
Poise eu tambem não sei, quando o caras falou eu tambem não entendi, vamos fazer de uma forma se não for essa o cara vai ver e vai dizer como é.
Quanto a primeira acredito que seja 1.00m3 e quanto aresta 2, deve ser soh aresta.
Quanto a seguna eh sim 1x1=12.
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Molina » Qui Fev 12, 2009 20:48
Nossa! Acho que está mais difícil decifrar o problema do que a resposta dele.
Eu acho que ao inves de 1x1=12 ele queria dizer 1x12=12,
pois o cubo tem 12 arestas.
Entendeu?
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Fev 13, 2009 10:30
Ola
Bom, pode ser que a resposta dele esteja errada. Tah se um cubo tem 12 Aresta entaum é soh dividir o 1,00 por 12?
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Molina » Sex Fev 13, 2009 13:36
Maligno escreveu:Ola
Bom, pode ser que a resposta dele esteja errada. Tah se um cubo tem 12 Aresta entaum é soh dividir o 1,00 por 12?
Abraços
Boa trade.
Não, não é isso.
A fórmula para saber o volume de um cubo é

. Se ele está dizendo que o cubo tem volume igual a 1,00m³, ou seja:


![\sqrt[3]{1}=a \sqrt[3]{1}=a](/latexrender/pictures/f055adaae6f1c2eb59bc75f743ce422c.png)

Ou seja,
a que neste caso representa a Aresta é igual a 1,00m quando se tem um cubo com volume de 1,00m³
Ficou claro?
Só nao sei se era isso que ele queria no problema.
Abraços

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Fev 13, 2009 13:57
Ola
Sim a fórmula eu ja sabia, trabalhei essa formula em fisica, em dilatação Térmica, mas tambem naum sei se era isso, vamos esperar ele falar alguma coisa se é isso, se não disser nada deve ser.
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cubo
por camilalindynha » Ter Dez 11, 2007 18:56
- 1 Respostas
- 6739 Exibições
- Última mensagem por admin

Ter Dez 11, 2007 20:05
Geometria Espacial
-
- Cubo (FEI - SP)
por Ananda » Qua Fev 27, 2008 16:05
- 3 Respostas
- 5004 Exibições
- Última mensagem por agp16

Dom Nov 08, 2009 21:42
Geometria Espacial
-
- CUBO
por Thassya » Seg Out 11, 2010 21:46
- 9 Respostas
- 5028 Exibições
- Última mensagem por MarceloFantini

Qua Out 20, 2010 21:48
Geometria Plana
-
- Cubo
por Pri Ferreira » Qua Mar 21, 2012 14:17
- 1 Respostas
- 1573 Exibições
- Última mensagem por LuizAquino

Ter Mar 27, 2012 18:05
Geometria Espacial
-
- cubo
por von grap » Qua Mai 09, 2012 18:36
- 0 Respostas
- 1881 Exibições
- Última mensagem por von grap

Qua Mai 09, 2012 18:36
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.