• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUVEST 93 - LOGARITMOS

FUVEST 93 - LOGARITMOS

Mensagempor Andromeda » Qua Jul 27, 2011 13:44

Olá! Gostaria de ajuda para resolver uma questão da fuvest:

Considere as equações:

I. log(x + y) = log x + log y

II. x + y = xy

a) As equações I e II têm as mesmas soluções? Justifique.

b) Esboce o gráfico da curva formada pelas soluções de I.

Eu até comecei o problema, tentando aplicar propriedades conhecidas de logaritmos, mas só cheguei nisso:
log (x+y) = log (xy)
log (x+y) - log (xy) = 0
log (x+y/xy) = 0
10^0 = x+y/xy
1 = x+y/xy
xy= x+y

...tcharãn...n cheguei a lugar algum...Podem me ajudar?
ps caso a resolução seja muito simples: eu mando mal em matemática mesmo rs
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando

Re: FUVEST 93 - LOGARITMOS

Mensagempor Neperiano » Qua Jul 27, 2011 19:30

Ola

Eu chutaria valores para x e y e verificaria se são iguais.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: FUVEST 93 - LOGARITMOS

Mensagempor LuizAquino » Qui Jul 28, 2011 10:11

Considere as equações:

I. log(x + y) = log x + log y

II. x + y = xy

a) As equações I e II têm as mesmas soluções? Justifique.

Não necessariamente.

Caso x > 0 e y > 0 forem soluções da equação x + y = xy, então podemos aplicar o logaritmo em ambos os membros dessa equação, obtendo log(x + y) = log(xy) = log x + log y. Portanto, x e y também são soluções dessa última equação.

Por outro lado, caso x < 0 e y > 0 (ou ainda x > 0 e y < 0) forem soluções da equação x + y = xy, então não podemos aplicar o logaritmo em ambos os membros da equação, pois apareceria o logaritmo de um número negativo.

b) Esboce o gráfico da curva formada pelas soluções de I.

Você começou a solução, porém não soube terminar.

Utilizando as propriedades de logaritmos, desenvolvemos a equação I até obter xy = x + y.

Isolando y nessa equação, ficamos com y = \frac{x}{x - 1} .

Note que para x e y serem positivos, basta escolher qualquer número x tal que x > 1. Portanto, o gráfico da função y = f(x) começa a partir de x > 1. Além disso, perceba duas coisas:
(i) se escolhemos x próximo de 1 (por exemplo, 1,1, 1,01, 1,001, 1,0001, etc) o valor de y é bem grande.
(ii) o valor de y é sempre maior do que 1, pois para calcular y nós estamos dividindo o número x pelo número x - 1, com isso temos uma fração cujo o numerador é sempre maior do que o denominador.

Agora, considerando essas informações e escolhendo alguns valores para x (por exemplo, 1,1, 1,2, 2, 3 e 4) você traçaria o esboço do gráfico abaixo.
gráfico.png
gráfico.png (7.69 KiB) Exibido 2275 vezes


Vale lembrar que as linhas pontilhadas em vermelho são apenas para você se guiar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: FUVEST 93 - LOGARITMOS

Mensagempor Andromeda » Qui Jul 28, 2011 10:51

Nossa, tem razão! Poxa, que pena que eu não percebi que a última equação a que cheguei poderia me dar o gráfico...Tenho muito que melhorar em matemática ainda... :$ Muito obrigado a todos que responderam, viu?
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?