• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Log - tenso dúvida

Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 16:40

Usando loga 3 = 1,09, loga 2 = 0,69 ou loga 5 = 1,61, calcule o valor dos seguintes logaritmos:

a) loga 144
b) loga 7200
c) loga ?32
d) loga \sqrt[3]{600}
e) loga 36*\sqrt[4]{18}
f) loga \frac{\sqrt[]{3}}{200}



Alguém poderia resolver, pelo menos, uma para que eu possa entender esse conceito? Sinceramente, eu não sei por onde começar!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor LuizAquino » Dom Jun 26, 2011 16:49

Você vai aplicar a mesma ideia usada no exercício do tópico:
Função Log - Tenso
viewtopic.php?f=107&t=5197
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 16:51

Blza. Vou dar uma analisada aqui!

vlw ...
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 17:29

Putz. É verdade, resolvi a letra a do mesmo jeito q naquele tópico



144/3 = 2 e 144/2 = 4

2,18 + 2,76 = 4,94

vlw

quero analisar o conceit, vou dar mais uma olhadinha aqui ...
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 21:52

P utz. Voltei agora para o PC e deu uma pensada nessa da raiz quadrada de 32.

Seria assim?

log (a, \sqrt[]{32})


\left({{2}^{5}}^{\frac{1}{2}} \right)

\left({2}^{\frac{5}{2}} \right)


\left(\frac{5}{2}*0,69 = 1,725 \right)
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor MarceloFantini » Dom Jun 26, 2011 21:54

Exatamente. Parabéns!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 22:27

Fiquei em dúvida nessa, mas eu acho q deu pra resolver!


\left(log (a, \sqrt[3]{600})\right)

\left({600}^{\frac{1}{3}} \right)

\left(1,09 + 3*0,69 + 2*1,61\right)

\left(6,38 * \frac{1}{3} = 2,126\right)
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor jamiel » Dom Jun 26, 2011 23:32

Fiquei confuso com essa:


log (a, 36*\sqrt[4]{18})

\left(36:2, 36:3 = 2*0,69 + 2*1,09 = 3,56 \right)

\left(18:2, 18:3, 0,69 + 2*1,09 = \frac{2,87}{4} = 0,7175 \right)

3,56 + 0,7175 = 4,2775

Eu considerei uma das propriedades(em vez de multiplicar, somar!), será q tá certo?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor MarceloFantini » Dom Jun 26, 2011 23:39

Lembre-se que \log_a (bc) = d \iff \log_a b + \log_a c = d. Então:

\log_a 36 \cdot \sqrt[4]{18} = \log_a 36 + \log_a \sqrt[4]{18}

Não consegui acompanhar sua solução, ficou um pouco confusa para mim, mas veja se o que você fez bate.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Log - tenso dúvida

Mensagempor jamiel » Seg Jun 27, 2011 00:12

rsrsrsr
Putz! Eu acho q o q vc fez tá mais certo q o meu, mas não sei como resolver isso q vc fez!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Log - tenso dúvida

Mensagempor MarceloFantini » Seg Jun 27, 2011 00:18

Jamiel, agora ficou mais fácil, é só você calcular quanto dá cada logaritmo usando o que você fez anteriormente e somar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?