• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização (Maximos e Minimos)

Otimização (Maximos e Minimos)

Mensagempor Maykids » Sex Jun 24, 2011 03:49

Uma caixa sem tampa deve ser construída com base quadrada e área total constante C. Determine os lados da caixa de modo que o volume seja máximo.

bom,
Base quadrada : x^2
os lados : a*x ***(pois X é a Base então um lado do retangulo é x)
C = (a*x) + x^2
V = (a*x^2)

então empaquei aqui, :lol: , isso se estiver certo até onde eu fiz, no caso eu tenho que derivar qual expressão para determinar o valor do lado??
Att,
Maycon Carlete
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Otimização (Maximos e Minimos)

Mensagempor MarceloFantini » Sex Jun 24, 2011 04:35

Você está esquecendo os outros lados, a área total (sem a tampa) é C = 4ax + x^2, logo a = \frac{C - x^2}{4x}. O volume então é dado por V = ax^2 = \frac{Cx - x^3}{4}. Agora derive-o e iguale a zero e encontre o valor de x que maximiza.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Otimização (Maximos e Minimos)

Mensagempor Maykids » Sex Jun 24, 2011 12:04

Bom Dia,
então ai no caso eu derivei ela:
\frac{4C - 12x^2}{16}
porem ainda continuou com o C e o X,
Vou postar uma coisa aqui que eu acho que esta errada, mais me corriga ai qualquer coisa :-P :
\frac{4C - 12x^2}{16}=0 \Rightarrow 4C - 12x^2=16 \Rightarrow -12x^2 = 16-4C \Rightarrow 12x^2 = 4C-16 \Rightarrow x= \sqrt[]{\frac{4C-16}{12}} \Rightarrow x= \sqrt[]{\frac{C-4}{3}}
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Otimização (Maximos e Minimos)

Mensagempor MarceloFantini » Sex Jun 24, 2011 15:51

A sua resposta tem que ficar em função de C mesmo. Lembre-se que C é apenas um número, só que arbitrário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Otimização (Maximos e Minimos)

Mensagempor LuizAquino » Sáb Jun 25, 2011 16:58

Maykids escreveu:\frac{4C - 12x^2}{16}=0 \Rightarrow 4C - 12x^2 = 16

Correção:
\frac{4C - 12x^2}{16}=0 \Rightarrow 4C - 12x^2 = 0

Obviamente você deve corrigir todo o resto a partir desse passo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.