por Claudin » Qua Jun 15, 2011 17:39
Encontre o domínio, a imagem e trace os gráficos:

.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sex Jun 17, 2011 09:57
Qual é exatamente a sua dúvida?
Para resolver esse exercício você precisa saber responder as seguintes questões:
(a) O que é o domínio de uma função?
(b) O que é a imagem de uma função?
(c) Qual é o gráfico da função

?
(d) Qual é o gráfico da função

?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Sáb Jun 18, 2011 02:38
Os conceitos já estão bem entendidos.
Gostaria de ver uma resolução da operação correta e fazer comparação.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sáb Jun 18, 2011 11:28
Para que o tempo dos colaboradores seja melhor aproveitado, o ideal é que o autor da dúvida envie primeiro a sua resolução.
Dessa maneira, o colaborador precisa apenas verificar se está tudo correto e, se for necessário, dar sugestões.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por carlosalesouza » Seg Jun 20, 2011 10:56
Claudin, meu caro...
Vejamos o seguinte... o domínio da função é o conjunto

formado pelos intervalos em que o valor de x é aceito pela função, nesse caso, os intervalos 0<x<3, x< -2 e x= -1... ok?
Agora, é necessário traçar os gráficos de cada uma das funções, nos intervalos de x estabelecidos e verificar a imagem, que será o conjunto

formado pelos valores de y que correspondem a f(x) em cada um dos intervalos do Domínio... não tem muito segredo... rs
Tenta criar o gráfico e mandar pra gente algum retorno...
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Definida por Partes
por JackBlack » Qua Set 28, 2016 17:36
- 0 Respostas
- 1701 Exibições
- Última mensagem por JackBlack

Qua Set 28, 2016 17:36
Funções
-
- [DERIVADAS PARCIAIS] Função definida por partes
por Sohrab » Dom Mai 26, 2013 17:13
- 0 Respostas
- 1324 Exibições
- Última mensagem por Sohrab

Dom Mai 26, 2013 17:13
Cálculo: Limites, Derivadas e Integrais
-
- INTEGRAÇÃO POR PARTES
por clarivando » Sex Fev 06, 2009 12:03
- 3 Respostas
- 7261 Exibições
- Última mensagem por Marcampucio

Seg Mar 16, 2009 15:50
Cálculo: Limites, Derivadas e Integrais
-
- Integração por partes
por clarivando » Sáb Fev 07, 2009 19:10
- 1 Respostas
- 1920 Exibições
- Última mensagem por clarivando

Ter Fev 10, 2009 20:26
Cálculo: Limites, Derivadas e Integrais
-
- partes iguais
por tigre_sc » Ter Set 28, 2010 19:18
- 5 Respostas
- 2958 Exibições
- Última mensagem por Neperiano

Sex Out 01, 2010 14:35
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.