• Anúncio Global
    Respostas
    Exibições
    Última mensagem

trigonometria simples mas o resultado não bate certo.

trigonometria simples mas o resultado não bate certo.

Mensagempor tiagofe » Sex Mai 06, 2011 17:31

boa tarde, o resultado não bate certo com a resposta do livro.

diz que a altura h é 318.

a mim deu 183,59.

se algum puder me ajudar agradecia.

http://tinypic.com/view.php?pic=18f5n9&s=7
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: trigonometria simples mas o resultado não bate certo.

Mensagempor FilipeCaceres » Sex Mai 06, 2011 21:57

triangulo_h.png
triangulo_h.png (7.77 KiB) Exibido 5021 vezes


Dados,
\alpha =30
\delta =60

Logo,
\beta =30
\gamma =30

Observe que o triângulo \Delta ADB é isósceles, então \overline{AD}=\overline{DB}=367

Desta forma temos,
h=367.sin\delta=367.sin60=367.\frac{\sqrt{3}}{2}

h\approx 317,83

Portanto,
h\approx 318

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: trigonometria simples mas o resultado não bate certo.

Mensagempor tiagofe » Sáb Mai 07, 2011 09:22

Boas, então a lei dos cenos e cossenos não servem para a triangulos isoceles?

Obrigado.
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: trigonometria simples mas o resultado não bate certo.

Mensagempor MarceloFantini » Sáb Mai 07, 2011 14:27

Servem, você deve ter montado errado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: trigonometria simples mas o resultado não bate certo.

Mensagempor claudinho » Dom Jun 12, 2011 12:20

tiagofe escreveu:Boas, então a lei dos cenos e cossenos não servem para a triangulos isoceles?

Obrigado.


Tiago, vc ta fazendo duas confusões...

1
não confunda "lei dos senos" e "seno"
igualmente não confunda "lei dos cossenos" e "cosseno"
seno, cosseno ou tangente podem ser aplicados unicamente em triangulos retangulos,

Na lei dos senos e lei dos cossenos,
o triângulo não precisa ser retângulo

resumo de quando aplicar "um raciocinio ou outro":
para triangulos retângulos: seno", cosseno ou tangente

para triangulos não-retângulos: lei dos senos ou lei dos cossenos

2
Por vc não ter reparado no detalhe dessas diferenças,
vc aplicou seno e cosseno num triângulo não-retângulo ABD
e está denominado esta fórmulas aplicadas de lei dos senos


Nesta questão em si era para tentar somente o raciocínio de
ou seno, (mais precisamente esta, neste exercicio)
ou cosseno
ou tg

mas que só se aplicaria ao "outro" triangulo (retângulo) BCD

Conforme o Felipe fez,,
depois que provou o valor de todos os "angulos e lados" escondidos na figura

Abraços
claudinho
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jun 10, 2011 13:55
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D