• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivadas

derivadas

Mensagempor vinicius cruz » Dom Jun 05, 2011 22:05

vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: derivadas

Mensagempor DanielFerreira » Seg Jun 06, 2011 18:27

y = \frac{\ln{\sqrt{x}}}{x}

y = \frac{\ln{x}^\frac{1}{2}}{x}

y = \frac{\frac{1}{2} . \ln{x}}{x}

y = \frac{\ln{x}}{2x}

y' = \frac{\frac{1}{x} . 2x - \ln{x} . 2}{4x^2}

y' = \frac{2 - 2.\ln{x}}{4x^2}

y' = \frac{1 - \ln{x}}{2x^2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: derivadas

Mensagempor DanielFerreira » Seg Jun 06, 2011 18:34

y = (x + 3)(2x + 3)(x + 3)

y = (2x + 3)(x + 3)^2

y' = (2x + 3).2(x + 3)^1.1 + 2(x + 3)^2

y' = 2(2x + 3)(x + 3) + 2(x + 3)^2

y' = 2(x + 3)[(2x + 3) + (x + 3)]

y' = 2(x + 3)(3x + 6)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}