por Claudin » Qui Jun 02, 2011 10:45
![\lim_{x\rightarrow2}\frac{\sqrt[]{x}+4}{x-2} \lim_{x\rightarrow2}\frac{\sqrt[]{x}+4}{x-2}](/latexrender/pictures/31546c107f215456a034952ac5608b2f.png)
Esse exercício, quando resolvo utilizando racionalização no inicio encontrei como resposta

Porém um amigo meu fez de outro modo substituindo o
![\sqrt[]{x} \sqrt[]{x}](/latexrender/pictures/23c0d9674da78a0d1fae7f37c6ce8039.png)
por

ai faz as devidas operações e depois ele faz racionalização no final e encontrou
![-2\sqrt[]{2}-4 -2\sqrt[]{2}-4](/latexrender/pictures/3b5dcc0af932ff7d3cd4692926fc4143.png)
Então gostaria de saber o porque dos resultados distintos, e se alguém puder postar a resolução correta!
Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ARCS » Qui Jun 02, 2011 11:08
Na realidade as duas respostas estão errada. Em casos como este você não pode racionalizar muito menos aplicar a regra de L'Hôpital pois você não tem uma indeterminação.
Note que quando x tende a 2 o numerador tende
![2+\sqrt[]{4} 2+\sqrt[]{4}](/latexrender/pictures/bf523056a0f038a23e2e495fe9b8706e.png)
e o denominador tente a zero. Da definição de limite temos que para que o limite exista precisamos que os limites laterais existam e ambos sejam iguais. Observem que de um lado o limite é mais infinito e de outro menos infinito, ou seja os limites laterais não existe(lembre que infinito não é um número) e muito menos são iguais.
-
ARCS
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Qui Out 28, 2010 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por carlosalesouza » Qui Jun 02, 2011 11:26
Uma pequena ressalva... distração do colega, quando x tenda a 2, o numerador tende a

...
De resto, é exatamente isso...
Os limites laterais, quando x tende a 2 são infinitos e distintos... logo, a função é descontínua em x=2...
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por carlosalesouza » Qui Jun 02, 2011 12:25
Com relação aos limites laterais, é necessários verificar, porque no ponto x=2,

Agora,
sendo u = x-2, quando x<2, u<0
e quando x>2, u>0
e sendo

, onde f(x) é sempre maior que 0, pois o menor valor aceitável para a raíz de x é 0 e 0+4 = 4...
então

Assim, se x<2, (v/u) com u<0 tende ao infinito negativo, pois v é positivo e u é negativo muito próximo de zero...
do mesmo modo, se x>0, (v/u), com u>0 tende ao infinito positivo, pois v e u são positivos e u é muito próximo de zero...
Ok?
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6650 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4793 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 5126 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7267 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4445 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.