por souzafontes » Ter Mai 31, 2011 14:35
Não consigo pensar numa saída para este limite:
![\lim_{x\rightarrow\infty}\frac{x+1}{\sqrt[]{x}} \lim_{x\rightarrow\infty}\frac{x+1}{\sqrt[]{x}}](/latexrender/pictures/80d92756e2a653f6217f26bb24ccc48f.png)
de acordo com os cálculos isso é

mas se plotarmos o gráfico é visível que o limite tende a 10...
como resolver isso?
-
souzafontes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Mai 31, 2011 14:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Claudin » Ter Mai 31, 2011 17:17
Também encontrei a mesma resposta que o Luiz!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por souzafontes » Ter Mai 31, 2011 18:34
é... eu já tinha chegado nessa conclusão...
fiquei confuso pq plotei no matlab, winplot, hp50g e por fim no wolframAlpha =P
todos os gráficos tendem a 10... gozado isso...
só de observar a função a gente vê que tende ao infinito né?
bom valeu pessoal! brigadão!!
-
souzafontes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Mai 31, 2011 14:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Ter Mai 31, 2011 20:42
souzafontes escreveu:fiquei confuso pq plotei no matlab, winplot, hp50g e por fim no wolframAlpha =P
todos os gráficos tendem a 10... gozado isso...
O erro está na sua interpretação. Você está confiando puramente em uma imagem. Você não fez uma leitura crítica dela!
Nesse caso em específico você poderia ter feito um teste simples. Até mesmo usando essas ferramentas que você citou! Se você considerar, nesse contexto, que 150 é um número "muito grande", então bastava calcular

. Você verá que essas ferramentas irão acusar que esse número é aproximadamente 12,33. Isso já vai de encontro com a sua interpretação meramente visual.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por souzafontes » Qua Jun 01, 2011 10:10
Editado pela última vez por
souzafontes em Qua Jun 01, 2011 10:21, em um total de 1 vez.
-
souzafontes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Mai 31, 2011 14:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por souzafontes » Qua Jun 01, 2011 10:19
LuizAquino escreveu:Você não fez uma leitura crítica dela!
entendiiii!!!!
agora entendi a leitura do gráfico!
acontece que quanto mais a gente ampliar o gráfico, mais a função encosta no eixo X, mas isso é
VISUAL!!
a função, OBVIAMENTE, sempre vai crescer!!
valeuzão pelo toque LuizAquino!!!
-
souzafontes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Mai 31, 2011 14:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Fabio Cabral » Qua Jun 01, 2011 11:27
Suponhamos que a resposta tivesse como resultado:

.
Seria igual a:

Faríamos o jogo de sinais normalmente?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por souzafontes » Qua Jun 01, 2011 12:05
sim

-
souzafontes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Mai 31, 2011 14:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Claudin » Qua Jun 01, 2011 12:13

e nesse caso também
Jogo de sinais normalmente!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qua Jun 01, 2011 14:34
Fabio Cabral, a minha
vídeo-aula "05. Cálculo I - Limites Infinitos" aborda esse "jogo de sinal" com os limites infinitos. Eu acredito que ela possa lhe interessar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes] Dúvida conceitual
por souzalucasr » Qua Ago 22, 2012 14:26
- 4 Respostas
- 4669 Exibições
- Última mensagem por souzalucasr

Qua Ago 29, 2012 12:34
Matrizes e Determinantes
-
- Dúvida conceitual sobre funções.
por Sobreira » Seg Fev 25, 2013 22:29
- 1 Respostas
- 1538 Exibições
- Última mensagem por Russman

Ter Fev 26, 2013 02:15
Funções
-
- (Vetor Colinear) Dúvida Conceitual
por Man Utd » Sáb Abr 20, 2013 17:42
- 5 Respostas
- 6842 Exibições
- Última mensagem por LuizAquino

Seg Abr 29, 2013 17:05
Geometria Analítica
-
- Função inversa : imagens + dúvida conceitual
por studieren » Qua Abr 28, 2010 17:08
- 4 Respostas
- 3644 Exibições
- Última mensagem por studieren

Sáb Mai 01, 2010 18:31
Funções
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6478 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.