• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Sáb Mai 28, 2011 10:26

Pode-se afirmar que todas as vezes que existir limites laterais diferentes o limite não existe?
Ou seja, sempre que for uma função descontínua não terá limites (no caso somente os limites laterais diferentes).

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sáb Mai 28, 2011 19:38

Por definição, dizemos que \lim_{x\to c} f(x) existe e é igual a L se, e somente se, \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L .

Não confundir o fato de uma função ser descontínua em um ponto com o fato de existir ou não limite naquele ponto.

Por exemplo, a função f(x) = \frac{x^2- 1}{x - 1} é descontínua no ponto x = 1, porém \lim_{x\to 1}f(x) existe e é igual a 2.

Já a função f(x)=\begin{cases}x - 1;\textrm{ se }x \leq 1 \\ x + 1;\textrm{ se }x > 1 \end{cases} também é descontínua no ponto x = 1 e temos que \lim_{x\to 1}f(x) não existe.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 01:42

Valeu pela ajuda Luiz.

No ultimo exemplo, consegui notar a descontinuidade. Porém não consegui notar que o limite não existe, quando x tende a 1. Não seria 0 a resposta para o limite?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Dom Mai 29, 2011 09:52

Qual é o valor de \lim_{x\to 1^-} f(x) ?

E de \lim_{x\to 1^+} f(x) ?

Os valores desses limites laterais são iguais?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 20:41

LuizAquino escreveu:Qual é o valor de \lim_{x\to 1^-} f(x) ?

E de \lim_{x\to 1^+} f(x) ?

Os valores desses limites laterais são iguais?


No segundo exemplo como ja tinha dito, a descontinuidade foi entendida.

Onde: f(x)=\begin{cases}x - 1;\textrm{ se }x \leq 1 \\ x + 1;\textrm{ se }x > 1 \end{cases}

Portanto: \lim_{x\rightarrow1^-}x-1\Rightarrow1-1 = 0

e \lim_{x\rightarrow1^+}x+1\Rightarrow1+1 = 2

Concluindo que os limites laterais são distintos, comprovando a descontinuidade!

Gostaria de saber porque não existe o limite?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Dom Mai 29, 2011 21:09

Claudin escreveu:Gostaria de saber porque não existe o limite?

Leia com atenção a definição dada acima.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 21:11

Li novamente, e acabei de entender Luiz

muito obrigado

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)