• Anúncio Global
    Respostas
    Exibições
    Última mensagem

3 questões de Binômio que não consigo resolver! =/

3 questões de Binômio que não consigo resolver! =/

Mensagempor Giles » Qua Nov 05, 2008 19:31

Olá, gostaria que alguém me ajuda-se nesses exercícios de Binômio que não consegui:

1-) Determine a soma dos coeficientes do desenvolvimento de {(x-y)}^{7}.

Não sei nem como começar! =/

2-) (Ufop-MG) No desenvolvimento de \left({x + \frac{1}{\sqrt[3]{x}}} \right)^{6}, calcule a ordem e o coeficiente do termo em .

Estou me confundindo (creio eu) com justamente o desafio dessa questão, que é a raiz cúbica no denominador.

3-) No desenvolvimento do binômio {(a + b)}^{n + 5}, ordenado segundo as potências decrescentes de a, o quociente do (n + 3)-ésimo termo pelo (n + 1)-ésimo termo é \frac{{2b}^{2}}{{3a}^{2}}, isto é, \frac{{T}_{n + 3}}{{T}_{n + 1}} = \frac{{2b}^{2}}{{3a}^{2}}. Determine n.

Desde já agradeço!

Giles.
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
Avatar do usuário
Giles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Dom Out 19, 2008 11:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Construção Civil Integr
Andamento: cursando

Re: 3 questões de Binômio que não consigo resolver! =/

Mensagempor Molina » Qui Nov 06, 2008 00:23

Giles escreveu:Olá, gostaria que alguém me ajuda-se nesses exercícios de Binômio que não consegui:

1-) Determine a soma dos coeficientes do desenvolvimento de {(x-y)}^{7}.


Olá Giles,

A soma dos coeficientes de {(x-y)}^{7}, basta pegar os coeficientes de x e de y, somá-los e elevar o resultado a potência do binômio, neste caso, a potência é 7.

O resultado obtido é a soma dos coeficientes.

Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: 3 questões de Binômio que não consigo resolver! =/

Mensagempor Molina » Qui Nov 06, 2008 00:40

Giles escreveu:Olá, gostaria que alguém me ajuda-se nesses exercícios de Binômio que não consegui:

2-) (Ufop-MG) No desenvolvimento de \left({x + \frac{1}{\sqrt[3]{x}}} \right)^{6}, calcule a ordem e o coeficiente do termo em .


Você precisa utilizar a Fórmula do termo geral de um Binômio de Newton:
{T}_{p+1}= \binom{n}{p}.{a}^{n-p}.{b}^{p}, onde \binom{n}{p}={C}_{n,p}=\frac{n!}{(n-p)!p!}

No caso de um polinômio de grau 6, o termo {x}^{2} é o 5° termo, ou seja, p = 4.
Tente resolver a partir daí.
Caso não consigo coloque suas dúvidas e onde parou aqui no fórum que alguem irá lhe auxiliar.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?