• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Vetorial

Produto Vetorial

Mensagempor ARCS » Sex Mai 20, 2011 08:59

Estou com dificuldades neste caso. Já fiz diversos exercícios parecidos com este, mas este envolve somas vetoriais. Grato pela ajuda!

Sabendo que |{u}^{\rightarrow}|=6, |{v}^{\rightarrow}|=4 e 30º o ângulo formado entre u e v.

Calcular a área do paralelogramo determinado por u+v e u-v.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Produto Vetorial

Mensagempor LuizAquino » Sex Mai 20, 2011 10:25

Dicas

Dados dois vetores \vec{a} e \vec{b}, temos que são válidas as afirmações abaixo.

(i) A área A do paralelogramo determinado por esses vetores, sendo \theta o ângulo formado entre eles, é dada por A = ||\vec{a}||\,||\vec{b}||\,\textrm{sen}\,\theta .

(ii) ||\vec{a} \pm {b}||^2 = ||\vec{a}||^2 \pm 2\left(\vec{a}\cdot\vec{b}\right) + ||\vec{b}||^2

(iii) \cos \theta = \frac{\vec{a}\cdot\vec{b}}{||\vec{a}||||\vec{b}||}, sendo \theta o ângulo formado por esses vetores (não nulos).

(iv) \left(\vec{a} + \vec{b}\right)\cdot \left(\vec{a} - \vec{b}\right) = ||\vec{a}||^2 - ||\vec{b}||^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)