• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dominio de uma Sequência

Dominio de uma Sequência

Mensagempor joaofonseca » Seg Mai 16, 2011 19:50

Pela definição de sequência (sucessão) sei que o dominio é \mathbb{N}. No entanto surgiu-me uma dúvida.
Será o conjunto dos inteiros não nulos {1,2,3,4,5,6,7....} ou dos inteiros não negativos \mathbb{N}_{0}, {0,1,2,3,4,5,6,7....}.
Nos livros que utilizo o 0 não entra nos \mathbb{N}, mas na internet encontrei uma abordagem as sequências com base nos \mathbb{N}_{0}.Pode parecer um promenor, mas não é!

Imaginemos a sucessão (s_{n})=n. Se o dominio for \mathbb{N} temos que o primeiro termo é 1, se o dominio for \mathbb{N}_{0}, o primeiro termo é 0.

Existe alguma convenção?
Normalmente qual o conjunto que utilizam para o estudo das sequências?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dominio de uma Sequência

Mensagempor Molina » Ter Mai 17, 2011 01:38

Boa noite, Joao Fonseca.

Quando estudei sequências, lembro-me muito bem que o professor definia primeiramente excluindo o 0, daí chegava em algum teorema que o 0 precisava fazer parte do domínio, daí tínhamos que mudar todas as notações anteriores e assim foi por várias vezes. Acredito que isso aconteceu porque ele não estava seguinte uma única referência bibliográfica e os autores usavam diferentes domínios, dependendo de onde eles queriam chegar. Por fim, acho que se ele tivesse seguido apenas uma dos dois modos chegaria nos mesmos resultados.

Esta dúvida é semelhante a autores incluirem (ou não) o 0 nos naturais...


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor MarceloFantini » Ter Mai 17, 2011 02:11

Também estudo sequências com os naturais sem o zero. Já ouvi dizer que é por razões técnicas que facilitam outros detalhes.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor FilipeCaceres » Ter Mai 17, 2011 02:21

Eu também uso sem o zero a não ser que venho especificado que é os naturais não negaticos \mathbb{N}_{+}.

Abraço à todos.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor MarceloFantini » Ter Mai 17, 2011 02:25

Inteiros não negativos, naturais, mesmo com o zero, sempre são não-negativos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor FilipeCaceres » Ter Mai 17, 2011 02:52

Editado

percebi um erroooo
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor FilipeCaceres » Ter Mai 17, 2011 02:57

Marcelo você esta correto cometi uma gafe *-)

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Dominio de uma Sequência

Mensagempor LuizAquino » Ter Mai 17, 2011 12:25

No contexto do ensino fundamental ou médio, a convenção é que 0 é um elemento do conjunto dos naturais.

Tanto é assim que usamos a notação \mathbb{N}^* para representar o conjunto dos naturais sem o zero.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59