• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor Abner » Qua Mai 11, 2011 17:30

Prove a seguinte afirmação, assumindo que A
e B são eventos com P(A)>0 e P(B)>0:
P(A|B)>P(A) se e só se P(B|A)>P(B) se e só se P(A?B)>P(A)P(B).
Neste caso, dizemos que A e B são eventos positivamente correlacionados
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: probabilidade

Mensagempor MarceloFantini » Qua Mai 11, 2011 23:26

Você se lembra a definição de probabilidade condicional? Se sim, deve sair fácil.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: probabilidade

Mensagempor Abner » Qui Mai 12, 2011 17:01

Marcelo sei sim o conceito de probabilidade condicional mas tenho dificuldade quando se trata de provar....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: probabilidade

Mensagempor lanca » Dom Mai 15, 2011 02:05

Oi...Por favor veja se estou no caminho certo

P( A/B) = P ( A inter B)/ P (B), P(B/A)= P ( A inter B)/ P (A)

Posso dizer que se P( A/B) > P(A) então ( A inter B) > P(A). P(B)
e que se P( B/A) > P(B) então P( A inter B) > P(A).P(B)

Então P(A/B) > P(A) (B/A) > P(B) ENTÃO P ( A inter B) > P(A). P(B)

Me corrija por favor
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)