por kvothe » Sex Mai 06, 2011 17:48
uma questao bastante polemica na prova de calculo que fiz hoje pede pra calcular a reta tangente à uma curva no ponto especifico.
cada um achou uma resposta diferente.
é uma equação parametrica.


a questao pede a equação da tangente a essa curva no ponto

eu cheguei a seguinte equação :
![y=\frac{\sqrt[]{3}}{2}x + \frac{1}{4} y=\frac{\sqrt[]{3}}{2}x + \frac{1}{4}](/latexrender/pictures/18e7bc902584b47e234971950fb0c057.png)
obrigado
-
kvothe
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mai 06, 2011 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Química
- Andamento: cursando
por LuizAquino » Sex Mai 06, 2011 18:49
Há duas formas básicas de fazer o exercício.
Você pode trabalhar diretamente com a equação paramétrica ou você pode determinar a equação cartesiana e usar derivação implícita.
Solução 1Usando diretamente a equação paramétrica, temos a curva

e queremos a reta tangente em

Sabemos que a reta tangente terá direção dada por

. Para o valor do parâmetro desejado, temos que

.
Desse modo, a reta tangente passa pelo ponto

e tem direção dada pelo vetor

. Logo, a equação vetorial dessa reta é

.
Agora, deixo para você o trabalho de passar essa equação da reta para a forma cartesiana.
Solução 2Se você quiser usar a estratégia de transformar a equação paramétrica em equação cartesiana, então basta fazer o que segue abaixo.
Elevando ao quadrado ambos os membros das equações originais:


Subtraindo essas equações:

Usando a identidade trigonométrica

:

Usando derivação implícita:


Lembrando que o ponto desejado é

:

Portanto, a reta tangente será:

Novamente, deixo para você o trabalho de terminar de arrumar a equação da reta.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Retas tangentes à parabola
por Filipe Ricardo Rosa » Dom Jul 03, 2011 19:26
- 8 Respostas
- 9181 Exibições
- Última mensagem por LuizAquino

Qua Jul 06, 2011 10:21
Cálculo: Limites, Derivadas e Integrais
-
- Retas tangentes ao gráfico
por Marcos_Mecatronica » Sáb Abr 27, 2013 19:58
- 1 Respostas
- 1882 Exibições
- Última mensagem por young_jedi

Dom Abr 28, 2013 12:16
Cálculo: Limites, Derivadas e Integrais
-
- Circulos Tangentes a Duas Retas
por nakagumahissao » Qua Abr 04, 2012 20:13
- 2 Respostas
- 3508 Exibições
- Última mensagem por nakagumahissao

Ter Mai 01, 2012 16:40
Sequências
-
- grafico com duas retas tangentes tocando uma circunferencia
por sonek182 » Qua Ago 19, 2009 17:51
- 0 Respostas
- 1740 Exibições
- Última mensagem por sonek182

Qua Ago 19, 2009 17:51
Trigonometria
-
- [Geometria Analítica] Retas Tangentes e Normais à Parábola
por IlgssonBraga » Ter Out 29, 2013 15:46
- 0 Respostas
- 1459 Exibições
- Última mensagem por IlgssonBraga

Ter Out 29, 2013 15:46
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.