• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG

PG

Mensagempor Livia Primo » Qui Mai 05, 2011 16:43

(UnB - DF) Somando-se um mesmo número a 11, 5 e 3, obtêm-se, na ordem dada, os três primeiros termos de uma progressão geométrica. O quarto termo dessa progressão é:

a) 9
b) 6
c) 3
d) 1/3
e) 1/6
Livia Primo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Fev 02, 2010 18:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: formado

Re: PG

Mensagempor Molina » Sex Mai 06, 2011 13:06

Bom dia, Livia.

Uma propriedade de PG é que o produto do primeiro com o terceiro termo é igual ao quadrado do termo do meio. Podemos tentar aplicar isso aqui, sendo a este número que vamos somar aos elementos.

(11+a)*(3+a)=(5+a)^2

33+14a+a^2=a^2+10a+25

4a=-8

a=-2

Ou seja, a sequencia assume valores: 9, 3, 1, ..., onde a razão entre os termos da PG é \frac{1}{3}. Logo o quarto termo é igual a \frac{1}{3}.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}