• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matrizes

matrizes

Mensagempor Abner » Sex Abr 22, 2011 21:36

Considere um ponto no plano cartesiano dado pelo par ordenado P = (x, y) e vamos associar a esse ponto um vetor como sendo o segmento orientado que sai da origem (0, 0) até o ponto (x, y) e seja representado pela matriz coluna v=[x, y] . Seja uma matriz genérica A =[a b;c d] . Dizemos que a matriz A efetua uma transformação sobre o vetor v pela ação do produto.


1. Escreva o resultado do produto Av.


2. Mostre o resultado da transformação de A aos pontos (1, 0) e (0, 1)


3. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se c = 0 = b, a = 1 e d = 1. São quatro casos.

4. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se a = 0 = d, c = 1 e b =1 . São quatro casos.

Na item 1 fiz a multiplicação de linhas por colunas e obtive A=[ax+by;cx+dy] não sei se está certo....
Agora no item 2 estou em duvida se é para substituir a matriz A pelos pontos (1,0) e (0,1)???? e tb no item 3 e 4???se puderem me dar alguma explicação de como fazer agradeço....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor LuizAquino » Sáb Abr 23, 2011 09:23

1. Escreva o resultado do produto Av.

Se A=\begin{bmatrix}a & b\\ c & d\end{bmatrix} e v=\begin{bmatrix}x \\ y\end{bmatrix}, então:

Av = \begin{bmatrix}a & b\\ c & d\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}ax+by \\ cx+dy\end{bmatrix}

2. Mostre o resultado da transformação de A aos pontos (1, 0) e (0, 1)

Basta substituir x=1 e y=0 em Av = \begin{bmatrix}ax+by \\ cx+dy\end{bmatrix}.

Faça o mesmo para x=0 e y=1.

3. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se c = 0 = b, a = 1 e d = 1. São quatro casos.

Lembre-se que se I é a matriz identidade, então Iv=v para qualquer v.

4. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se a = 0 = d, c = 1 e b =1 . São quatro casos.

Lembre-se que a reflexão do ponto (x, y) em relação a reta y=x é o ponto (y, x).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: matrizes

Mensagempor Abner » Sáb Abr 23, 2011 21:17

No item 2 para x=1 e y=0
então ira ficar( a c )e para x=0 e y=1 ficara( b d)?
Mas não entendi no item 3 e 4 porque sao quatro casos...desde ja agradeço pela colaboração....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor LuizAquino » Sáb Abr 23, 2011 21:32

No item 2 para x=1 e y=0, então ira ficar( a c ) e para x=0 e y=1 ficara( b d)?

Apenas organizando com a notação correta:
(a) se x=1 e y=0, então Av = \begin{bmatrix}a \\ c\end{bmatrix};

(b) se x=0 e y=1, então Av = \begin{bmatrix}b \\ d\end{bmatrix}.

Mas não entendi no item 3 e 4 porque sao quatro casos...

Na minha opinião o texto dos itens 3 e 4 está mal colocado, haja vista que fixando os valores como foi informado haverá um tipo de transformação em cada caso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D