• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor AlbertoAM » Seg Abr 18, 2011 19:14

Derivar e simplificar:
f(x)=\frac{{x}^{3}}{3}arctg(3x)-\frac{{x}^{2}}{18}+\frac{ln(9{x}^{2}+1)}{162}

Eu resolvi deste modo:
1ªparcela:\left(\frac{{x}^{3}}{3}\right)'arctg(3x)+\left(\frac{{x}^{3}}{3}\right)\left(arctg(3x) \right)'\n\n={x}^{2}arctg(3x)+\frac{{x}^{3}}{9{x}^{2}+1}

2ªparcela:\frac{1}{18}2x=\frac{x}{9}

3ªparcela:\frac{x}{9(9{x}^{2}+1)}

\therefore f'(x)={x}^{2}arctg(3x)+\frac{{x}^{3}}{9{x}^{2}+1}-\frac{x}{9}+\frac{x}{9(9{x}^{2}+1)}=\\={x}^{2}arctg(3x)+\frac{9{x}^{3}-9{x}^{3}}{9(9{x}^{2}+1)}={x}^{2}arctg(3x)

Eu queria saber se a resolução está correta, pois estou sem o gabarito dessa questão.
Outra dúvida minha é como ficaria a derivada de \left({sen}^{2} \frac{x}{5}\right)'
Eu cheguei em \frac{2}{5}sen\frac{x}{5}cos\frac{x}{5}, mas acho que está errado.

Muito Obrigado.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivadas

Mensagempor LuizAquino » Ter Abr 19, 2011 14:29

Está correto:

(a) f(x)=\frac{{x}^{3}}{3}\textrm{ arctg}\, 3x-\frac{{x}^{2}}{18}+\frac{\ln(9{x}^{2}+1)}{162} \Rightarrow f^\prime(x) = x^2\textrm{ arctg}\,3x

(b) f(x) = \textrm{ sen}^2\,\frac{x}{5} \Rightarrow f^\prime(x) = \frac{2}{5}\textrm{ sen}\,\frac{1}{5}x \cos \frac{1}{5} \, x
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas

Mensagempor AlbertoAM » Ter Abr 19, 2011 15:24

Muito Obrigado.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.