por Regina » Qua Abr 06, 2011 21:17
Estou agora a dar o cálculo de assimptotas do gráfico de uma função mas tenho muitas dificuldades em calcular o domínio da função dada, já que é necessário para estudar a existência de assimptotas. Não tenho nenhum caso em particular, mas há alguma regra, forma de calcular o dominio que se aplique a todas as funções(exponenciais, logarítmicas, quadráticas, com frações...etc)?
-
Regina
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 25, 2011 14:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em química
- Andamento: cursando
por Molina » Qui Abr 07, 2011 01:12
Boa noite, Regina.
Podemos verificar o domínio das funções por análise do gráfico ou através da lei de formação. Como você não colocou nenhum exemplo específico vou dar uma exemplo.
Seja

No caso de funções que tenha variável no denominador, você terá que tomar cuidado, pois o
x não pode ser zero, já que numa fração o denominador nunca é zero.
Ou seja, neste exemplo, o domínio são todos os números reais, com exceção do 0. Matematicamente ficaria assim:

Outro exemplo:
Seja

Trabalhando no conjunto dos números reais, não existe raiz de número negativo, ou seja, dentro da raiz é obrigado a ser maior ou igual a zero. Por isso:

Ou seja, neste exemplo, o domínio são todos os números reais maiores ou iguais a 5. Matematicamente ficaria assim:

Caso você queira colocar alguma função e seu domínio para verificar se está correto, fique a vontade! Ou então queira compartilhar outras questões, pode contar conosco!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Regina » Sáb Abr 09, 2011 13:09
Foi muito explícito e percebi!
Tenho aqui uns exemplos concretos:
1) a(x)=
![\frac{x}{\sqrt[]{x}} \frac{x}{\sqrt[]{x}}](/latexrender/pictures/c3a3147e744354b97a32a38056366572.png)
tenho variável no denominador e no numerador. Se o denominador não pode ser 0, então a raíz vai ter que ser um número superior a 0 correcto? Como por exemplo
![\sqrt[]{1} \sqrt[]{1}](/latexrender/pictures/c27c91cace800eaf0a3cd0936a90638a.png)
Assim o domínio vai ser

2) f(x)=

Neste caso o domínio pode ser todo o conjunto de números reais, R? Mas se x=0, a função anula-se, ou não?
3)

Neste caso x pode tomar todos os valores de R correcto? e assim o domínio da função vai ser R.
4)

esta aqui é que não consigo entender.
Explique-me em cada uma o que está certo e o que está errado.
Já agora, no 2º exemplo que colocou
![\sqrt[]{x-5} \sqrt[]{x-5}](/latexrender/pictures/83a71375fe7f5908fad145100f8a20c2.png)
, o domínio será

. Então e se a expressão fosse
![\sqrt[]{x+5} \sqrt[]{x+5}](/latexrender/pictures/5f17b27f9d7312e51ae958674eddaade.png)
? Seria

correcto?
Desde já, obrigada
-
Regina
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 25, 2011 14:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em química
- Andamento: cursando
por Molina » Sáb Abr 09, 2011 16:34
Boa tarde, Regina.
A 1) está correta.
Na 2) o domínio são os Reais, já que não há nenhum impedimento para algum número.
A 3) está correta.
Na 4) temos que analisar dois impedimentos: o primeiro é o que há dentro do ln. Aquilo que está entre parênteses precisa ser maior do que zero, para o ln existir. Então:

O outro impedimento é o denominador da fração que precisa ser diferente de zero. Então:

Ou seja, o domínio será a intersecção dos dois impedimentos, logo:

Quanto ao seu exemplo final, baseado no meu exemplo está correto sim o que você fez. O domínio é aquele mesmo.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Regina » Dom Abr 10, 2011 12:38
Muito obrigado!
Este forum tem me sido muito útil!
-
Regina
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 25, 2011 14:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em química
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções Compostas e seus domínios
por NinhaH » Ter Jan 04, 2011 11:58
- 2 Respostas
- 3377 Exibições
- Última mensagem por NinhaH

Qui Jan 06, 2011 11:31
Funções
-
- [FUNÇÕES] CALCULAR
por Miya » Ter Mar 31, 2015 17:09
- 0 Respostas
- 595 Exibições
- Última mensagem por Miya

Ter Mar 31, 2015 17:09
Funções
-
- Como calcular limites de funções com seno?
por starlord » Sáb Ago 23, 2014 19:30
- 2 Respostas
- 1697 Exibições
- Última mensagem por adauto martins

Qui Out 23, 2014 23:11
Cálculo: Limites, Derivadas e Integrais
-
- Dominios e Contradominios
por joaofonseca » Sáb Out 01, 2011 15:09
- 8 Respostas
- 6554 Exibições
- Última mensagem por MarceloFantini

Ter Out 04, 2011 21:19
Funções
-
- Domínios de uma função
por ah001334 » Seg Nov 07, 2011 14:08
- 20 Respostas
- 12101 Exibições
- Última mensagem por procyon

Seg Nov 07, 2011 22:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.