• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcular domínios de funções

calcular domínios de funções

Mensagempor Regina » Qua Abr 06, 2011 21:17

Estou agora a dar o cálculo de assimptotas do gráfico de uma função mas tenho muitas dificuldades em calcular o domínio da função dada, já que é necessário para estudar a existência de assimptotas. Não tenho nenhum caso em particular, mas há alguma regra, forma de calcular o dominio que se aplique a todas as funções(exponenciais, logarítmicas, quadráticas, com frações...etc)?
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: calcular domínios de funções

Mensagempor Molina » Qui Abr 07, 2011 01:12

Boa noite, Regina.

Podemos verificar o domínio das funções por análise do gráfico ou através da lei de formação. Como você não colocou nenhum exemplo específico vou dar uma exemplo.

Seja f(x)=\frac{1}{x}

No caso de funções que tenha variável no denominador, você terá que tomar cuidado, pois o x não pode ser zero, já que numa fração o denominador nunca é zero.

Ou seja, neste exemplo, o domínio são todos os números reais, com exceção do 0. Matematicamente ficaria assim:

Dom~f(x)= (- \infty , 0) \cup (0, + \infty )

Outro exemplo:

Seja g(x)=\sqrt{x-5}

Trabalhando no conjunto dos números reais, não existe raiz de número negativo, ou seja, dentro da raiz é obrigado a ser maior ou igual a zero. Por isso:

x-5 \geq 0 \Rightarrow x \geq 5

Ou seja, neste exemplo, o domínio são todos os números reais maiores ou iguais a 5. Matematicamente ficaria assim:

Dom~g(x)= [5, + \infty )

Caso você queira colocar alguma função e seu domínio para verificar se está correto, fique a vontade! Ou então queira compartilhar outras questões, pode contar conosco!


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: calcular domínios de funções

Mensagempor Regina » Sáb Abr 09, 2011 13:09

Foi muito explícito e percebi!

Tenho aqui uns exemplos concretos:

1) a(x)=\frac{x}{\sqrt[]{x}} tenho variável no denominador e no numerador. Se o denominador não pode ser 0, então a raíz vai ter que ser um número superior a 0 correcto? Como por exemplo \sqrt[]{1}
Assim o domínio vai ser {R}^{+}

2) f(x)={x}^{2}+x Neste caso o domínio pode ser todo o conjunto de números reais, R? Mas se x=0, a função anula-se, ou não?

3) g(x)=\frac{{e}^{x}}{2}-2 Neste caso x pode tomar todos os valores de R correcto? e assim o domínio da função vai ser R.

4) s(x)=\frac{ln(3x+1)}{2x} esta aqui é que não consigo entender.


Explique-me em cada uma o que está certo e o que está errado.


Já agora, no 2º exemplo que colocou \sqrt[]{x-5}, o domínio será D=(5, +\infty(. Então e se a expressão fosse \sqrt[]{x+5}? Seria D=(-5, +\infty( correcto?

Desde já, obrigada
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: calcular domínios de funções

Mensagempor Molina » Sáb Abr 09, 2011 16:34

Boa tarde, Regina.

A 1) está correta.

Na 2) o domínio são os Reais, já que não há nenhum impedimento para algum número.

A 3) está correta.

Na 4) temos que analisar dois impedimentos: o primeiro é o que há dentro do ln. Aquilo que está entre parênteses precisa ser maior do que zero, para o ln existir. Então:

3x+1 > 0 \Rightarrow x > - \frac{1}{3}

O outro impedimento é o denominador da fração que precisa ser diferente de zero. Então:

2x \neq 0 \Rightarrow x \neq 0

Ou seja, o domínio será a intersecção dos dois impedimentos, logo: Dom=\left[- \frac{1}{3} , 0 \right) \cup (0, +\infty )


Quanto ao seu exemplo final, baseado no meu exemplo está correto sim o que você fez. O domínio é aquele mesmo.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: calcular domínios de funções

Mensagempor Regina » Dom Abr 10, 2011 12:38

Muito obrigado!

Este forum tem me sido muito útil!
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59