• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UEL-PR triângulos

UEL-PR triângulos

Mensagempor Kelvin Brayan » Qui Abr 07, 2011 03:00

(UEL-PR) Após um tremor de terra, dois muros paralelos em uma rua de uma cidade ficaram ligeiramente abalados. Os moradores se reuniram e decidiram escorar os muros utilizando duas barras metálicas, como mostra a figura. Sabendo que os muros têm alturas de 9m e 3m, respectivamente, a que altura do nível do chão as duas barras se interceptam ? Despreze a espessura das barras
Anexos
Foto0026.jpg
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Qui Abr 07, 2011 16:14

a resposta e quanto ? 9/4!?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Kelvin Brayan » Qui Abr 07, 2011 16:23

a resposta é 2,25m = 9/4 é isso mesmo ! como se resolve?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Qui Abr 07, 2011 17:39

a cara nao tem como so mostrando a imagem mas se tem q aplicar teorema de tales pra ver que eles sao semelhantes achar a razao entre eles e aplicar a propriedade de semelhança de areas ai traçar as alturas relativas a cada triangulo onde vc vai perceber outro caso de semelhança onde la vc acha a resposta
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Elcioschin » Qui Abr 07, 2011 19:04

Existe uma solução muito simples usando Geometria Analítica:

Seja um sistema xOy com a origem no pé do muo mais alto e o chão no eixo X
Seja d a distãncia entre os dois muros

1) Equação da reta suporte da barra menor, cujo coeficiente angular vale 3/d ----> y = (3/d)*x

2) Idem da reta suporte da barra maior, com coeficiente angular -9/d ----> y = (-9/d)*x + 9

No ponto de cruzamento as duas abcissas (x) e ordenadas (y) são iguais: (3/d)*x = (-9/d)*x + 9 ----> (12/d)*x = 9 ----> x = (3/4)*d

y = (3/d)*x ----> y = (3/d)*(3/4)*d ----> y = 9/4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Sex Abr 08, 2011 00:08

uahsuasauhs irado !! mas ai se apelo tbm kkk
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor FilipeCaceres » Sex Abr 08, 2011 00:34

relação_triangulo.GIF
relação_triangulo.GIF (2.19 KiB) Exibido 27631 vezes


Vou postar minha solução também.
Fazendo semelhando temos,
\frac{3}{a+b}=\frac{x}{b} (i)

\frac{9}{a+b}=\frac{x}{a} (ii)

Dividindo uma da outra encontramos
b=3a

Substituindo em qualquer equação, temos
\frac{3}{a+3a}=\frac{x}{3a}

\frac{3.3a}{4a}=x

x=\frac{9}{4}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: UEL-PR triângulos

Mensagempor kamillanjb » Sex Abr 08, 2011 09:36

Muito boa a resolução, foi útil para mim também. Grata
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.