• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UEL-PR triângulos

UEL-PR triângulos

Mensagempor Kelvin Brayan » Qui Abr 07, 2011 03:00

(UEL-PR) Após um tremor de terra, dois muros paralelos em uma rua de uma cidade ficaram ligeiramente abalados. Os moradores se reuniram e decidiram escorar os muros utilizando duas barras metálicas, como mostra a figura. Sabendo que os muros têm alturas de 9m e 3m, respectivamente, a que altura do nível do chão as duas barras se interceptam ? Despreze a espessura das barras
Anexos
Foto0026.jpg
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Qui Abr 07, 2011 16:14

a resposta e quanto ? 9/4!?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Kelvin Brayan » Qui Abr 07, 2011 16:23

a resposta é 2,25m = 9/4 é isso mesmo ! como se resolve?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Qui Abr 07, 2011 17:39

a cara nao tem como so mostrando a imagem mas se tem q aplicar teorema de tales pra ver que eles sao semelhantes achar a razao entre eles e aplicar a propriedade de semelhança de areas ai traçar as alturas relativas a cada triangulo onde vc vai perceber outro caso de semelhança onde la vc acha a resposta
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Elcioschin » Qui Abr 07, 2011 19:04

Existe uma solução muito simples usando Geometria Analítica:

Seja um sistema xOy com a origem no pé do muo mais alto e o chão no eixo X
Seja d a distãncia entre os dois muros

1) Equação da reta suporte da barra menor, cujo coeficiente angular vale 3/d ----> y = (3/d)*x

2) Idem da reta suporte da barra maior, com coeficiente angular -9/d ----> y = (-9/d)*x + 9

No ponto de cruzamento as duas abcissas (x) e ordenadas (y) são iguais: (3/d)*x = (-9/d)*x + 9 ----> (12/d)*x = 9 ----> x = (3/4)*d

y = (3/d)*x ----> y = (3/d)*(3/4)*d ----> y = 9/4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: UEL-PR triângulos

Mensagempor Fabricio dalla » Sex Abr 08, 2011 00:08

uahsuasauhs irado !! mas ai se apelo tbm kkk
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UEL-PR triângulos

Mensagempor FilipeCaceres » Sex Abr 08, 2011 00:34

relação_triangulo.GIF
relação_triangulo.GIF (2.19 KiB) Exibido 27626 vezes


Vou postar minha solução também.
Fazendo semelhando temos,
\frac{3}{a+b}=\frac{x}{b} (i)

\frac{9}{a+b}=\frac{x}{a} (ii)

Dividindo uma da outra encontramos
b=3a

Substituindo em qualquer equação, temos
\frac{3}{a+3a}=\frac{x}{3a}

\frac{3.3a}{4a}=x

x=\frac{9}{4}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: UEL-PR triângulos

Mensagempor kamillanjb » Sex Abr 08, 2011 09:36

Muito boa a resolução, foi útil para mim também. Grata
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}