• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação

inequação

Mensagempor jose henrique » Sáb Mar 26, 2011 00:41

\frac{x-3}{{x}^{2}+3x-4}\leq 0  \Leftrightarrow \frac{x-3}{(x-4)(x+1)}\leq 0

eu achei como solução
o intervalo
S= (-\infty, -1) \cup (3,4]

porém o gabarito da prova diz que a resposta é
S=(-\infty, -4) \cup (1,3]

qual deles está errado? desde já, agradeço a quem puder me ajudar.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação

Mensagempor MarceloFantini » Sáb Mar 26, 2011 01:46

Acredito que você tenha errado na fatoração. (x-4)(x+1) = x^2 +x -4x -4 = x^2 -3x -4.

A certa é (x+4)(x-1) = x^2 -x +4x -4 = x^2 +3x -4. Refaça usando isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequação

Mensagempor FilipeCaceres » Sáb Mar 26, 2011 01:51

Ola

Você encontrou uma solução diferente pois errou o sinal na fatoração. Corrigindo temos?
\frac{x-3}{{x}^{2}+3x-4}\leq 0 \Leftrightarrow \frac{x-3}{(x-1)(x+4)}\leq 0

Se não conseguir é só falar que eu posto a solução.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: inequação

Mensagempor jose henrique » Sáb Mar 26, 2011 10:47

na verdade eu resolvi a equação {x}^{2}+3x-4=0 onde eu achei os valores S= {-4, 1}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequação

Mensagempor MarceloFantini » Sáb Mar 26, 2011 15:27

Lembre-se que quando fatoramos polinômios, o resultado é a(x - x_1)(x - x_2). Como x_1 = -4 e x_2 = 1, (x - (-4))(x-1) = (x+4)(x-1) e não (x-4)(x+1) como você havia feito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59