• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PA - Questão ITA

PA - Questão ITA

Mensagempor jessicaccs » Ter Mar 08, 2011 19:33

Boa tarde,
gostaria da ajuda, se possível, na resolução dessa questão do ITA.





Tentei resolvê-la adotando valores para o k, como de costume. Para k=1, achei a{}_{3}, adotando esse como sendo a soma de a{}_{1}\,+\,a{}_{2}\,+\,a{}_{3}. Novamente, adotei k=2 e achei a{}_{6}, em seguida adotei o mesmo pensamento anterior. A partir daí adotei o conceito de PA nas duas equações, resolvi o sistema e consegui achar o que foi pedido.
Entretanto, minha resposta está diferente da do livro.
Achei:

r=2\pi\:e\:a{}_{1}=\sqrt[]{2}+\pi.

Sendo a resposta:
a{}_{1}=\sqrt[]{2}-\frac{\pi}{3}\:e\:r=\frac{2\pi}{3}


Obrigada pela ajuda,
Jéssica.
jessicaccs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Out 13, 2009 19:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Efomm
Andamento: cursando

Re: PA - Questão ITA

Mensagempor LuizAquino » Ter Mar 08, 2011 21:05

Temos o somatório \sum_{k=1}^{n}\,a{}_{3k}\,=n\sqrt{2} + \pi n^{2}, para n\in\,N{}^{*}.

Para n=1, temos que:

\sum_{k=1}^{1}\,a{}_{3k} = 1\cdot \sqrt{2} + \pi \cdot 1^2

a_{3\cdot 1} = \sqrt{2} + \pi

a_{3} = \sqrt{2} + \pi

Para n=2, temos que:
\sum_{k=1}^{2}\,a{}_{3k} =  2\cdot \sqrt{2} + \pi \cdot 2^2

a_{3\cdot 1} + a_{3\cdot 2} = 2\sqrt{2} + 4\pi

a_3 + a_6 = 2\sqrt{2} + 4\pi

Mas, como a_3 =  \sqrt{2} + \pi, então a_6 =  \sqrt{2} + 3\pi.

Agora, basta você resolver o sistema:
\begin{cases}
a_3 = a_1 + 2r \\
a_6 = a_1 + 5r 
\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: PA - Questão ITA

Mensagempor jessicaccs » Qua Mar 09, 2011 21:59

Muito obrigada, Luiz.
Não havia pensando nesta resolução.
Eu estava adotando valores para o 'k' e não para o 'n', como o correto.
;)
jessicaccs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Out 13, 2009 19:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Efomm
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.