• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite e neperiano

Limite e neperiano

Mensagempor Zkz » Sáb Set 13, 2008 20:30

Eu tentei resolver essa questão, mas não tenho certeza de que o procedimento está correto.

\lim_{n\to0}  \left(\frac{e^{2x}-1}{e^{3x}-1}\right)

Eu fiz:
e^{3x} - 1 = u
ln (e^{3x})= ln(u+1)
x= \frac{ln(u+1)}{3}

Substituindo:

\lim_{u\to0} \frac{e^{\frac{2.ln(u+1)}{3}}-1}{u}
\lim_{u\to0} \frac{ (e^{ln(u+1)})^{\frac{2}{3}}- 1}{u}

Aplicando a propriedade logarítma:

\lim_{u\to0} \frac { (u+1)^{ \frac{2}{3} }- 1 } {u}

Bem, aqui é que está, continua dando indeterminação. Postei aqui o raciocínio que eu segui...alguém pode me dar uma luz?
Ah! Desculpa se estiver um tanto confuso, é a primeira vez que uso latex.
Zkz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2008 19:12
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia da computação
Andamento: cursando

Re: Limite e neperiano

Mensagempor admin » Ter Set 16, 2008 21:20

Olá Zkz, boas-vindas!

Para obter uma expressão sem indeterminação, tente utilizar diferença de quadrados e diferença de cubos. Depois, após uma simplificação, coloque e^x em evidência (numerador e denominador).

Sobre a fatoração por diferenças de quadrados e cubos, visualizei assim:

\lim_{n\to 0}  \left(\frac{e^{2x}-1}{e^{3x}-1}\right) =
\lim_{n\to 0}  \left[\frac{(e^x)^2-1^2}{(e^x)^3-1^3}\right] = \cdots

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.