• Anúncio Global
    Respostas
    Exibições
    Última mensagem

VUNESP

VUNESP

Mensagempor DanielFerreira » Seg Fev 28, 2011 09:49

Considere as sequências (a_{n}) e (b_{n}) definidas por a_{n + 1} = 2^n e b_{n + 1} = 3^n, com n maior ou igual a 0. Então, o valor de a_{11} . b_{6} é:

a) 2^{11} . 3^6

b) 12^5

c) 5^{15}

d) 6^{15}

e) 6^{30}

letra "e".
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: VUNESP

Mensagempor Elcioschin » Seg Fev 28, 2011 10:50

an+1 = 2^n ----> Para n = 10 ----> a11 = 2^10 -----> a11 = 2^5*2^5

bn+1 = 3^n ----> Para n = 5 ----> b6 = 3^5

a11*b6 = 2^5*2^5*3^5 ----> a11*b6 = 2^5*(2^5*3^5) ----> a11*b6 = 2^5^*(2*3)^5 ----> a11*b6 = 2^5*6^5 ---->

a11*b6 = (2*6)^5 ----> a11*b6 = 12^5
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: VUNESP

Mensagempor DanielFerreira » Seg Fev 28, 2011 11:01

Valeu Elcio,
também encontrei essa opção, o problema era o gab.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)