• Anúncio Global
    Respostas
    Exibições
    Última mensagem

QUESTÂO DE VESTIBULAR

QUESTÂO DE VESTIBULAR

Mensagempor Kelvin Brayan » Dom Fev 20, 2011 17:10

Olá, será que alguém poderia me ajudar com a seguinte questão de matemática?

01.(UFU-MG) um maratonista calcula que, se correr a uma velocidade constante de 10km/h, chegará ao fim do percuso às 10:00 horas. Contudo, se sua velocidade constante for 15 km/h, ele chegará às 08:00 horas. Para que ele chegue exatamente às 09:00 horas, sua velocidade constante deverá ser de...


Tentei resolvê-la, mas não consegui. Nem ao menos tenho ideia de como iniciá-la !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: QUESTÂO DE VESTIBULAR

Mensagempor Neperiano » Dom Fev 20, 2011 20:05

Ola

Cara não sei se esta certo, mas vou realizar esta questão utilizando as equações de fisíca.

x=xo+vt

Bom se em ambos os casos os corredores querem chegar no mesmo local em tempos diferentes igualamos.

x1=x2
vou usar 0 para xo, por isto vou cortar ele
vt=vt
10.10=v9
v=11,11km

Esta é a velocidade para que ele termine a prova as 9 horas da manha.

Se tiver gabarito confirme

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: QUESTÂO DE VESTIBULAR

Mensagempor Kelvin Brayan » Qua Fev 23, 2011 09:42

Olá, então, eu já tentei resolvê-la de diversas maneiras, utilizando regras de razões e proporções. Mas, nem uma das tentativas deu certo.
Segundo o gabarito, a resposta certa é 12 km/h.
Eu já tentei resolver também uma vez dessa maneira e deu 11,1 km/h também. Então, o gabarito deve estar errado !

as alternativas são:
A) 12km/h
B) 12,5km/h
C) 11km/h
D) 11,5 km/h
E) 13 km/h

Mas de toda forma, muito obrigado !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: QUESTÂO DE VESTIBULAR

Mensagempor lucas7 » Qua Fev 23, 2011 13:13

Kelvin Brayan escreveu:Olá, será que alguém poderia me ajudar com a seguinte questão de matemática?

01.(UFU-MG) um maratonista calcula que, se correr a uma velocidade constante de 10km/h, chegará ao fim do percuso às 10:00 horas. Contudo, se sua velocidade constante for 15 km/h, ele chegará às 08:00 horas. Para que ele chegue exatamente às 09:00 horas, sua velocidade constante deverá ser de...


Tentei resolvê-la, mas não consegui. Nem ao menos tenho ideia de como iniciá-la !


Me parece que, se a 10km/h se chega as 10:00 horas, e a 15km/h se chega as 08:00, para que se chegue as 09:00 horas o calculo seria \frac{15km/h + 10km/h}{2} \Leftrightarrow 12,5km/h pois \frac{10h+8h}{2} \Leftrightarrow 9h

espero ter ajudado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: QUESTÂO DE VESTIBULAR

Mensagempor DanielFerreira » Qua Fev 23, 2011 15:46

01.(UFU-MG) um maratonista calcula que, se correr a uma velocidade constante de 10km/h, chegará ao fim do percuso às 10:00 horas. Contudo, se sua velocidade constante for 15 km/h, ele chegará às 08:00 horas. Para que ele chegue exatamente às 09:00 horas, sua velocidade constante deverá ser de...
A) 12km/h
B) 12,5km/h
C) 11km/h
D) 11,5 km/h
E) 13 km/h

S = Vt

V = 10km/h ==========> t horas =======================> S = 10t
V = 15km/h ==========> (t - 2) horas ===================> S = 15(t - 2)
V = ? ================> (t - 1) horas ===================> S = ?(t - 1)

10t = 15(t - 2)
15t - 10t = 30
5t = 30
t = 6h

S = 10t
S = 60km

S = ?(t - 1)
60 = ?(6 - 1)
60 = 5?
? = 12 km/h

Espero ter ajudado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: QUESTÂO DE VESTIBULAR

Mensagempor Kelvin Brayan » Sáb Fev 26, 2011 12:50

Obrigado pessoal !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: QUESTÂO DE VESTIBULAR

Mensagempor DanielFerreira » Qua Mar 02, 2011 19:21

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?