por Tayron » Qua Fev 09, 2011 16:35
Bom em primeiro lugar Ótimo site de estudos, estão de parabéns já consegui tirar varias duvidas que tinha somente com visitas, mas hoje estou com um probleminha um pouco maior, trata - se de uma duvida em um problema de Derivada do Quociente onde sempre me perco no meio da resolução, vamos ao problema.

Resolvi ele até certa parte:
u =

u' =

v =

v' =

y' =
u'.v-v'.u v²
y' =

Bom ai eu me perco não sei se o processo até ai está 100% correto mais foi assim que consegui assimilar quando o professor explicou.
* Desculpem não consegui colocar o símbolo de derivado no "u e v" apresentado na formula.
** Coloquei as variáveis u e v para definirem a formula antes de derivada e depois de derivar.
*** Preciso de ajuda em como proceder pois tenho uma grande dificuldade pois não sei se devo multiplicar a primeira pela segunda parte.
Grato!
-
Tayron
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Fev 09, 2011 15:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng.Cívil
- Andamento: cursando
por LuizAquino » Qua Fev 09, 2011 17:15
Olá Tayron,
Primeiro, gostaria de lhe dizer que para escrever x elevado a n, basta usar o código LaTeX x^n. Além disso, para colocar o símbolo de derivada em u, por exemplo, use o comando LaTeX u^\prime.
Dito isso, a sua dúvida é a derivada de:

Usando a regra do quociente, temos que:


Aplicando a distributiva e simplificando os termos, obtemos:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10502 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- Derivada do Quociente
por dekol2 » Dom Mai 06, 2012 20:39
- 4 Respostas
- 3159 Exibições
- Última mensagem por LuizAquino

Seg Mai 07, 2012 11:34
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Quociente
por Paraujo » Dom Set 23, 2012 21:15
- 9 Respostas
- 4891 Exibições
- Última mensagem por Paraujo

Ter Set 25, 2012 12:15
Cálculo: Limites, Derivadas e Integrais
-
- Derivada quociente.
por Sobreira » Seg Out 29, 2012 16:24
- 3 Respostas
- 2280 Exibições
- Última mensagem por young_jedi

Seg Out 29, 2012 17:58
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida com derivada do quociente
por arnoanderson » Seg Nov 02, 2009 12:08
- 2 Respostas
- 3487 Exibições
- Última mensagem por arnoanderson

Ter Nov 03, 2009 09:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.