• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor ARCS » Sex Jan 14, 2011 19:23

Não estou conseguindo sair da indeterminação. Estou multiplicando numerador e denominador por \sqrt[]{7+\sqrt[3]{x}}+3. 

Usando a regra de l´Hopital encontrei como resposta 1/72. Como calcular esse limite sem usar a regra de L´Hopital?




   \lim_{x\rightarrow8}\frac{\sqrt[]{7+\sqrt[3]{x}}-3}{x-8}
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites

Mensagempor MarceloFantini » Sáb Jan 15, 2011 20:11

Vou fazer as manipulações sem limite. Veja:

f(x) = \frac{\sqrt{7+\sqrt[3]{x}} - 3}{x -8}

Manipulando:

\frac{ \sqrt{7+\sqrt[3]{x}} - 3}{x-8} \cdot \frac{ \sqrt{7+\sqrt[3]{x}} +3}{\sqrt{7+\sqrt[3]{x}} +3} = \frac{7+\sqrt[3]{x} -9}{(x-8)(\sqrt{7+\sqrt[3]{x}} +3)} = \frac{\sqrt[3]{x} - 2}{(x-8)(\sqrt{7+\sqrt[3]{x}} +3)} \cdot \frac{ \sqrt[3]{x^2} + 2 \sqrt[3]{x} + 4}{ \sqrt[3]{x^2} + 2 \sqrt[3]{x} + 4} = \frac{x-8}{(x-8)(\sqrt{7+\sqrt[3]{x}} +3)( \sqrt[3]{x^2} + 2 \sqrt[3]{x} + 4)} = \frac{1}{(\sqrt{7+\sqrt[3]{x}} +3)( \sqrt[3]{x^2} + 2 \sqrt[3]{x} + 4)}

Agora, com limite:

\lim_{x \to 8} f(x) = \lim_{x \to 8} \frac{1}{(\sqrt{7+\sqrt[3]{x}} +3)( \sqrt[3]{x^2} + 2 \sqrt[3]{x} + 4)} = \frac{1}{(\sqrt{7+\sqrt[3]{8}} +3)( \sqrt[3]{8^2} + 2 \sqrt[3]{8} + 4)} = \frac{1}{(3+3)(4 + 4 + 4)} = \frac{1}{72}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59