• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Será que é possivel dizer?

Será que é possivel dizer?

Mensagempor sergiosilva » Qui Jan 06, 2011 19:47

Olá,

Apareceu-me uma dúvida que não sei se estou a pensar bem.

Se eu tiver duas funcões continuas, tais como:
f: [0,1] -> R , com f(0)= 0 e f(1)=1
g:[0,1] ->[0,1]

posso dizer que f(p)=g(p) , se p tiver entre 0 e 1?

Pois pensei no seguinte:

g(x)=f(x)+k , ou seja, k= g(x) -f(x)

mas g:[0,1] ->[0,1] , penso que posso dizer isto g(0)=0 e g(1)=1. Será que posso pensar assim? Por isso penso que posso concluir que f(p)=g(p) , se p tiver entre 0 e 1.

Estarei a pensar bem? ........

Um abraço para todos e boas aprendizagens matemáticas :)
sergiosilva
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jan 05, 2011 22:34
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Será que é possivel dizer?

Mensagempor MarceloFantini » Qui Jan 06, 2011 21:24

Eu fiz um pequeno esboço (perdoe a qualidade gráfica) que contraria a sua hipótese. Veja:

Imagem

A linha vermelha representa a função f e a linha amarela representa a função g. O esboço atende às condições:

f: [0,1] \to \Re
g: [0,1] \to [0,1]

Note que f pode assumir qualquer valor enquanto x varia de 0 a 1, e g varia apenas entre 0 e 1.

Espero ter ajudado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Será que é possivel dizer?

Mensagempor OtavioBonassi » Sex Jan 07, 2011 01:19

Não sei se vou conseguir te ajudar muito cara ,mas pela sua explicação eu consegui entender o seguinte :

o fato de voce delimitar um domínimo e um conjunto imagem nao significa que você tem pontos iguais entre dois gráficos ... se eu entendi direito voce quer dizer mais ou menos que delimitando um quadrado, 2D , você afirma que com certeza duas bolinhas que foram jogadas lá dentro vão se encontrar (desculpe a metáfora entre bolinhas e gráficos, e encontros e interceptações) ,e esse encontro pode ou não acontecer, nao é certeza ... nao sei se consegui ser claro.

Abraço,
Otávio.
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?